Skip to main content

Animal Models of REM Sleep Behavior Disorder

  • Chapter
  • First Online:
Rapid-Eye-Movement Sleep Behavior Disorder

Abstract

Evidence from animal studies indicates the importance of the dorsomedial and medial pontine tegmentum and the ventromedial medulla in maintaining muscle tone inhibition during REM sleep; however, the symptoms in animals with lesions in these areas do not fully mimic the symptoms of human REM sleep behavior disorder (RBD). This chapter summarizes the findings in our laboratory and offers a hypothesis on the neural network involved in the modulation of motor activity in sleep, the neural structures participating in the generation of RBD, and a hypothetical link between RBD and Parkinsonism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fernandez-Arcos A, Iranzo A, Serradell M, Gaig C, Santamaria J. The clinical phenotype of idiopathic rapid eye movement sleep behavior disorder at presentation: a study in 203 consecutive patients. Sleep. 2016;39(1):121–32.

    Article  Google Scholar 

  2. Schenck CH, Bundlie SR, Ettinger MG, Mahowald MW. Chronic behavioral disorders of human REM sleep: a new category of parasomnia. Sleep. 1986;9(2):293–308.

    Article  CAS  Google Scholar 

  3. Jouvet M, Delorme F. Locus coeruleus et sommeil paradoxal. Compt Rend Soc Biol. 1965;159:895–9.

    Google Scholar 

  4. Magoun HW, Rhines R. An inhibitory mechanism in the bulbar reticular formation. J Neurophysiol. 1946;9:165–71.

    Article  CAS  Google Scholar 

  5. Lai YY, Siegel JM. Muscle tone suppression and stepping produced by stimulation of midbrain and rostral pontine reticular formation. J Neurosci. 1990;10(8):2727–34.

    Article  CAS  Google Scholar 

  6. Lai YY, Clements JR, Wu XY, Shalita T, Wu JP, Kuo JS, Siegel JM. Brainstem projections to the ventromedial medulla in cat: retrograde transport horseradish peroxidase and immunohistochemical studies. J Comp Neurol. 1999;408(3):419–36.

    Article  CAS  Google Scholar 

  7. Shiromani PJ, Lai YY, Siegel JM. Descending projections from the dorsolateral pontine tegmentum to the paramedian reticular nucleus of the caudal medulla in the cat. Brain Res. 1990;517(1–2):224–8.

    Article  CAS  Google Scholar 

  8. Lai YY, Siegel JM. Pontomedullary glutamate receptors mediating locomotion and muscle tone suppression. J Neurosci. 1991;11(9):2931–7.

    Article  CAS  Google Scholar 

  9. Hajnik T, Lai YY, Siegel JM. Atonia-related regions in the rodent pons and medulla. J Neurophysiol. 2000;84(4):1942–8.

    Article  CAS  Google Scholar 

  10. Lai YY, Siegel JM. Medullary regions mediating atonia. J Neurosci. 1988;8(12):4790–6.

    Article  CAS  Google Scholar 

  11. Siegel JM, Wheeler RL, McGinty DJ. Activity of medullary reticular formation neurons in the unrestrained cat during waking and sleep. Brain Res. 1979;179(1):49–60.

    Article  CAS  Google Scholar 

  12. Lai YY, Clements JR, Siegel JM. Glutamatergic and cholinergic projections to the pontine inhibitory area identified with horseradish peroxidase retrograde transport and immunohistochemistry. J Comp Neurol. 1993;336(3):321–30.

    Article  CAS  Google Scholar 

  13. Sakai K, Kanamori N, Jouvet M. [Neuronal activity specific to paradoxical sleep in the bulbar reticular formation in the unrestrained cat]. C R Seances Acad Sci D. 1979;289(6):557–61.

    Google Scholar 

  14. Schenkel E, Siegel JM. REM sleep without atonia after lesions of the medial medulla. Neurosci Lett. 1989;98(2):159–65.

    Article  CAS  Google Scholar 

  15. Kodama T, Lai YY, Siegel JM. Suppression of muscle tone by the medulla: distinct roles of nucleus gigantocellularis and magnocellularis. Program No. 300, Soc Neurosci Abstract; 2010.

    Google Scholar 

  16. White SR, Neuman RS. Facilitation of spinal motoneurone excitability by 5-hydroxytryptamine and noradrenaline. Brain Res. 1980;188(1):119–27.

    Article  CAS  Google Scholar 

  17. Lai YY, Strahlendorf HK, Fung SJ, Barnes CD. The actions of two monoamines on spinal motoneurons from stimulation of the locus coeruleus in the cat. Brain Res. 1989;484(1–2):268–72.

    Article  CAS  Google Scholar 

  18. Wu MF, Gulyani SA, Yau E, Mignot E, Phan B, Siegel JM. Locus coeruleus neurons: cessation of activity during cataplexy. Neuroscience. 1999;91(4):1389–99.

    Article  CAS  Google Scholar 

  19. Lai YY, Kodama T, Siegel JM. Changes in monoamine release in the ventral horn and hypoglossal nucleus linked to pontine inhibition of muscle tone: an in vivo microdialysis study. J Neurosci. 2001;21(18):7384–91.

    Article  CAS  Google Scholar 

  20. Lai YY, Kodama T, Schenkel E, Siegel JM. Behavioral response and transmitter release during atonia elicited by medial medullary stimulation. J Neurophysiol. 2010;104(4):2024–33.

    Article  Google Scholar 

  21. Kodama T, Lai YY, Siegel JM. Changes in inhibitory amino acid release linked to pontine-induced atonia: an in vivo microdialysis study. J Neurosci. 2003;23(4):1548–54.

    Article  CAS  Google Scholar 

  22. Holstege JC, Bongers CM. A glycinergic projection from the ventromedial lower brainstem to spinal motoneurons. An ultrastructural double labeling study in rat. Brain Res. 1991;566(1–2):308–15.

    Article  CAS  Google Scholar 

  23. Mileykovskiy BY, Kiyashchenko LI, Kodama T, Lai YY, Siegel JM. Activation of pontine and medullary motor inhibitory regions reduces discharge in neurons located in the locus coeruleus and the anatomical equivalent of the midbrain locomotor region. J Neurosci. 2000;20(22):8551–8.

    Article  CAS  Google Scholar 

  24. Sanford LD, Morrison AR, Mann GL, Harris JS, Yoo L, Ross RJ. Sleep patterning and behaviour in cats with pontine lesions creating REM without atonia. J Sleep Res. 1994;3(4):233–40.

    Article  CAS  Google Scholar 

  25. Shouse MN, Siegel JM. Pontine regulation of REM sleep components in cats: integrity of the pedunculopontine tegmentum (PPT) is important for phasic events but unnecessary for atonia during REM sleep. Brain Res. 1992;571(1):50–63.

    Article  CAS  Google Scholar 

  26. Schenck CH, MW M. A polysomnographic, neurologic, psychiatric, and clinical outcome report on 70 consecutive cases with REM sleep behavior disorder (RBD): sustained clonazepam efficacy in 89.5% of 57 treated patients. Clev Clin J Med. 1990;57(Suppl):S9–S23.

    Google Scholar 

  27. Lai YY, Siegel JM. Brainstem-mediated locomotion and myoclonic jerks. I. Neural substrates. Brain Res. 1997;745(1–2):257–64.

    Article  CAS  Google Scholar 

  28. Lai YY, Siegel JM. Brainstem-mediated locomotion and myoclonic jerks. II. Pharmacological effects. Brain Res. 1997;745(1–2):265–70.

    Article  CAS  Google Scholar 

  29. Lai YY, Hsieh KC, Nguyen D, Peever J, Siegel JM. Neurotoxic lesions at the ventral mesopontine junction change sleep time and muscle activity during sleep: an animal model of motor disorders in sleep. Neuroscience. 2008;154(2):431–43.

    Article  CAS  Google Scholar 

  30. Mazza S, Soucy JP, Gravel P, Michaud M, Postuma R, Massicotte-Marquez J, Decary A, Montplaisir J. Assessing whole brain perfusion changes in patients with REM sleep behavior disorder. Neurology. 2006;67(9):1618–22.

    Article  CAS  Google Scholar 

  31. Salva MA, Guilleminault C. Olivopontocerebellar degeneration, abnormal sleep, and REM sleep without atonia. Neurology. 1986;36(4):576–7.

    Article  CAS  Google Scholar 

  32. Coleman JR, Clerici WJ. Sources of projections to subdivisions of the inferior colliculus in the rat. J Comp Neurol. 1987;262(2):215–26.

    Article  CAS  Google Scholar 

  33. Yasui Y, Nakano K, Kayahara T, Mizuno N. Non-dopaminergic projections from the substantia nigra pars lateralis to the inferior colliculus in the rat. Brain Res. 1991;559(1):139–44.

    Article  CAS  Google Scholar 

  34. Sugiyama Y, Shiba K, Nakazawa K, Suzuki T, Hisa Y. Brainstem vocalization area in guinea pigs. Neurosci Res. 2010;66(4):359–65.

    Article  Google Scholar 

  35. Juch PJ, Schaafsma A, van Willigen JD. Brainstem influences on biceps reflex activity and muscle tone in the anaesthetized rat. Neurosci Lett. 1992;140(1):37–41.

    Article  CAS  Google Scholar 

  36. Hsieh KC, Nguyen D, Siegel JM, Lai YY. New pathways and data on rapid eye movement sleep behaviour disorder in a rat model. Sleep Med. 2013;14(8):719–28.

    Article  Google Scholar 

  37. Valencia Garcia S, Libourel P-A, Lazarus M, Grassi D, Luppi P-H, Fort P. Genetic inactivation of glutamate neurons in the rat sublaterodorsal tegmental nucleus recapitulates REM sleep behavior disorder. Brain. 2017;140:414–28.

    Article  Google Scholar 

  38. Plazzi G, Corsini R, Provini F, Pierangeli G, Martinelli P, Montagna P, Lugaresi E, Cortelli P. REM sleep behavior disorders in multiple system atrophy. Neurology. 1997;48(4):1094–7.

    Article  CAS  Google Scholar 

  39. Wetter TC, Collado-Seidel V, Pollmacher T, Yassouridis A, Trenkwalder C. Sleep and periodic leg movement patterns in drug-free patients with Parkinson’s disease and multiple system atrophy. Sleep. 2000;23(3):361–7.

    Article  CAS  Google Scholar 

  40. Schenck CH, Bundlie SR, Mahowald MW. Delayed emergence of a Parkinsonian disorder in 38% of 29 older men initially diagnosed with idiopathic rapid eye movement sleep behaviour disorder. Neurology. 1996;46(2):388–93.

    Article  CAS  Google Scholar 

  41. Shalash AS, Hassan DM, Elrassas HH, Salama MM, Mendez-Hernandez E, Salas-Pacheco JM, Arias-Carrion O. Auditory- and vestibular-evoked potentials correlate with motor and non-motor features of Parkinson’s disease. Front Neurol. 2017;8:55.

    PubMed  PubMed Central  Google Scholar 

  42. Kodama Y, Ieda T, Hirayama M, Koike Y, Ito H, Sobue G. Auditory brainstem responses in patients with autonomic failure with Parkinson’s disease and multiple system atrophy. J Auton Nerv Syst. 1999;77(2–3):184–9.

    Article  CAS  Google Scholar 

  43. Shin HY, Joo EY, Kim ST, Dhong HJ, Cho JW. Comparison study of olfactory function and substantia nigra hyperechogenicity in idiopathic REM sleep behavior disorder, Parkinson’s disease and normal control. Neurol Sci. 2013;34(6):935–40.

    Article  Google Scholar 

  44. Walker Z, Costa DC, Walker RW, Lee L, Livingston G, Jaros E, Perry R, McKeith I, Katona CL. Striatal dopamine transporter in dementia with Lewy bodies and Parkinson disease: a comparison. Neurology. 2004;62(9):1568–72.

    Article  CAS  Google Scholar 

  45. Murphy DD, Rueter SM, Trojanowski JQ, Lee VM. Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci. 2000;20(9):3214–20.

    Article  CAS  Google Scholar 

  46. Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A, Meaney DF, Trojanowski JQ, Lee VM. Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron. 2011;72(1):57–71.

    Article  CAS  Google Scholar 

  47. Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ, Lee VM. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 2012;338(6109):949–53.

    Article  CAS  Google Scholar 

  48. Ulusoy A, Rusconi R, Perez-Revuelta BI, Musgrove RE, Helwig M, Winzen-Reichert B, Di Monte DA. Caudo-rostral brain spreading of alpha-synuclein through vagal connections. EMBO Mol Med. 2013;5(7):1119–27.

    Article  CAS  Google Scholar 

  49. Manaker S, Fogarty PF. Raphespinal and reticulospinal neurons project to the dorsal vagal complex in the rat. Exp Brain Res. 1995;106(1):79–92.

    Article  CAS  Google Scholar 

  50. Rinaman L. Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Res. 2010;1350:18–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Yang Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lai, YY., Hsieh, KC., Siegel, J.M. (2019). Animal Models of REM Sleep Behavior Disorder. In: Schenck, C., Högl, B., Videnovic, A. (eds) Rapid-Eye-Movement Sleep Behavior Disorder. Springer, Cham. https://doi.org/10.1007/978-3-319-90152-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90152-7_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90151-0

  • Online ISBN: 978-3-319-90152-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics