Skip to main content

Adolescence and Scoliosis: Deciphering the Complex Biology of Puberty and Scoliosis

  • Chapter
  • First Online:
  • 804 Accesses

Abstract

Adolescent idiopathic scoliosis (AIS) is the most common paediatric spinal disorder, affecting 2–5.2% of the population. Individuals with AIS have, for a long time, been known to exhibit differences in weight, height, body mass index (BMI), pubertal progression and levels of circulating hormones, suggesting that AIS may arise due to metabolism-endocrine-gene interactions. Here, we present an overview of biological changes that occur during puberty, in relation to the developing spine, along with the pathways involved, with an emphasis on those linked to AIS through recent human genetic studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abreu AP, Kaiser UB. Pubertal development and regulation. Lancet Diabetes Endocrinol. 2016;4:254–64.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Adobor RD, Riise RB, Sorensen R, Kibsgard TJ, Steen H, Brox JI. Scoliosis detection, patient characteristics, referral patterns and treatment in the absence of a screening program in Norway. Scoliosis. 2012;7:18.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aksglaede L, Olsen LW, Sorensen TI, Juul A. Forty years trends in timing of pubertal growth spurt in 157,000 Danish school children. PLoS One. 2008;3:e2728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arfai K, Pitukcheewanont PD, Goran MI, Tavare CJ, Heller L, Gilsanz V. Bone, muscle, and fat: sex-related differences in prepubertal children. Radiology. 2002;224:338–44.

    Article  PubMed  Google Scholar 

  5. Arslanian S, Suprasongsin C, Kalhan SC, Drash AL, Brna R, Janosky JE. Plasma leptin in children: relationship to puberty, gender, body composition, insulin sensitivity, and energy expenditure. Metabolism. 1998;47:309–12.

    Article  CAS  PubMed  Google Scholar 

  6. Azeddine B, Letellier K, Wang da S, Moldovan F, Moreau A. Molecular determinants of melatonin signaling dysfunction in adolescent idiopathic scoliosis. Clin Orthop Relat Res. 2007;462:45–52.

    Article  PubMed  Google Scholar 

  7. Baker ER. Body weight and the initiation of puberty. Clin Obstet Gynecol. 1985;28:573–9.

    Article  CAS  PubMed  Google Scholar 

  8. Banks WA. Leptin transport across the blood-brain barrier: implications for the cause and treatment of obesity. Curr Pharm Des. 2001;7:125–33.

    Article  CAS  PubMed  Google Scholar 

  9. Blum WF, Englaro P, Hanitsch S, Juul A, Hertel NT, Muller J, et al. Plasma leptin levels in healthy children and adolescents: dependence on body mass index, body fat mass, gender, pubertal stage, and testosterone. J Clin Endocrinol Metab. 1997;82:2904–10.

    PubMed  CAS  Google Scholar 

  10. Canavese F, Dimeglio A. Normal and abnormal spine and thoracic cage development. World J Orthod. 2013;4:167–74.

    Article  Google Scholar 

  11. Canavese F, Kaelin A. Adolescent idiopathic scoliosis: indications and efficacy of nonoperative treatment. Indian J Orthop. 2011;45:7–14.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Charles YP, Daures JP, de Rosa V, Dimeglio A. Progression risk of idiopathic juvenile scoliosis during pubertal growth. Spine. 2006;31:1933–42.

    Article  PubMed  Google Scholar 

  13. Choudhry MN, Ahmad Z, Verma R. Adolescent idiopathic scoliosis. Open Orthop J. 2016;10:143–54.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Clark EM, Taylor HJ, Harding I, Hutchinson J, Nelson I, Deanfield JE, et al. Association between components of body composition and scoliosis: a prospective cohort study reporting differences identifiable before the onset of scoliosis. J Bone Miner Res. 2014;29:1729–36.

    Article  PubMed  Google Scholar 

  15. Crowley SJ, Acebo C, Carskadon MA. Human puberty: salivary melatonin profiles in constant conditions. Dev Psychobiol. 2012;54:468–73.

    Article  CAS  PubMed  Google Scholar 

  16. Cui J, Shen Y, Li R. Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends Mol Med. 2013;19:197–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Demirkiran G, Dede O, Yalcin N, Akel I, Marcucio R, Acaroglu E. Selective estrogen receptor modulation prevents scoliotic curve progression: radiologic and histomorphometric study on a bipedal C57Bl6 mice model. Eur Spine J. 2014;23:455–62.

    Article  PubMed  Google Scholar 

  18. Dimeglio A, Canavese F. The growing spine: how spinal deformities influence normal spine and thoracic cage growth. Eur Spine J. 2012;21:64–70.

    Article  PubMed  Google Scholar 

  19. Dimeglio A, Canavese F, Bonnel F. Normal growth of the spine and thorax. Berlin/Heidelberg: Springer-Verlag; 2016.

    Book  Google Scholar 

  20. Fagan AB, Kennaway DJ, Sutherland AD. Total 24-hour melatonin secretion in adolescent idiopathic scoliosis. A case-control study. Spine. 1998;23:41–6.

    Article  CAS  PubMed  Google Scholar 

  21. Girardo M, Bettini N, Dema E, Cervellati S. The role of melatonin in the pathogenesis of adolescent idiopathic scoliosis (AIS). Eur Spine J. 2011;20(Suppl 1):S68–74.

    Article  PubMed  Google Scholar 

  22. Granados A, Gebremariam A, Lee JM. Relationship between timing of peak height velocity and pubertal staging in boys and girls. J Clin Res Pediatr Endocrinol. 2015;7:235–7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Herbison AE. Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nat Rev Endocrinol. 2016;12:452–66.

    Article  CAS  PubMed  Google Scholar 

  24. Inoue M, Minami S, Nakata Y, Kitahara H, Otsuka Y, Isobe K, et al. Association between estrogen receptor gene polymorphisms and curve severity of idiopathic scoliosis. Spine. 2002;27:2357–62.

    Article  PubMed  Google Scholar 

  25. Iwamuro S, Sakakibara M, Terao M, Ozawa A, Kurobe C, Shigeura T, et al. Teratogenic and anti-metamorphic effects of bisphenol A on embryonic and larval Xenopus laevis. Gen Comp Endocrinol. 2003;133:189–98.

    Article  CAS  PubMed  Google Scholar 

  26. Janusz P, Kotwicka M, Andrusiewicz M, Czaprowski D, Czubak J, Kotwicki T. Estrogen receptors genes polymorphisms and age at menarche in idiopathic scoliosis. BMC Musculoskelet Disord. 2014;15:383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaplowitz PB. Link between body fat and the timing of puberty. Pediatrics. 2008;121(Suppl 3):S208–17.

    Article  PubMed  Google Scholar 

  28. Konieczny MR, Senyurt H, Krauspe R. Epidemiology of adolescent idiopathic scoliosis. J Child Orthop. 2013;7:3–9.

    Article  PubMed  Google Scholar 

  29. Kouwenhoven JW, Castelein RM. The pathogenesis of adolescent idiopathic scoliosis: review of the literature. Spine. 2008;33:2898–908.

    Article  PubMed  Google Scholar 

  30. Leboeuf D, Letellier K, Alos N, Edery P, Moldovan F. Do estrogens impact adolescent idiopathic scoliosis? Trends Endocrinol Metab. 2009;20:147–52.

    Article  CAS  PubMed  Google Scholar 

  31. Leung KC, Johannsson G, Leong GM, Ho KK. Estrogen regulation of growth hormone action. Endocr Rev. 2004;25:693–721.

    Article  CAS  PubMed  Google Scholar 

  32. Liang G, Gao W, Liang A, Ye W, Peng Y, Zhang L, Sharma S, Su P, Huang D. Normal leptin expression, lower adipogenic ability, decreased leptin receptor and hyposensitivity to leptin in adolescent idiopathic scoliosis. PLoS One. 2012;7:e36648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Little DG, Song KM, Katz D, Herring JA. Relationship of peak height velocity to other maturity indicators in idiopathic scoliosis in girls. J Bone Joint Surg Am. 2000;82:685–93.

    Article  CAS  PubMed  Google Scholar 

  34. Liu Z, Tam EM, Sun GQ, Lam TP, Zhu ZZ, Sun X, et al. Abnormal leptin bioavailability in adolescent idiopathic scoliosis: an important new finding. Spine. 2012;37:599–604.

    Article  PubMed  Google Scholar 

  35. Liu Z, Wang F, Xu LL, Sha SF, Zhang W, Qiao J, et al. Polymorphism of rs2767485 in leptin receptor gene is associated with the occurrence of adolescent idiopathic scoliosis. Spine. 2015;40:1593–8.

    Article  PubMed  Google Scholar 

  36. Loncar-Dusek M, Pecina M, Prebeg Z. A longitudinal study of growth velocity and development of secondary gender characteristics versus onset of idiopathic scoliosis. Clin Orthop Relat Res. 1991:278–82.

    Google Scholar 

  37. Lonstein JE, Carlson JM. The prediction of curve progression in untreated idiopathic scoliosis during growth. J Bone Joint Surg Am. 1984;66:1061–71.

    Article  CAS  PubMed  Google Scholar 

  38. Luna AM, Wilson DM, Wibbelsman CJ, Brown RC, Nagashima RJ, Hintz RL, et al. Somatomedins in adolescence: a cross-sectional study of the effect of puberty on plasma insulin-like growth factor I and II levels. J Clin Endocrinol Metab. 1983;57:268–71.

    Article  CAS  PubMed  Google Scholar 

  39. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med. 1995;1:1155–61.

    Article  CAS  PubMed  Google Scholar 

  40. Man GC, Wang WW, Yeung BH, Lee SK, Ng BK, Hung WY, et al. Abnormal proliferation and differentiation of osteoblasts from girls with adolescent idiopathic scoliosis to melatonin. J Pineal Res. 2010;49:69–77.

    PubMed  CAS  Google Scholar 

  41. Man GC, Wong JH, Wang WW, Sun GQ, Yeung BH, Ng TB, et al. Abnormal melatonin receptor 1B expression in osteoblasts from girls with adolescent idiopathic scoliosis. J Pineal Res. 2011;50:395–402.

    Article  CAS  PubMed  Google Scholar 

  42. Mannion AF, Meier M, Grob D, Muntener M. Paraspinal muscle fibre type alterations associated with scoliosis: an old problem revisited with new evidence. Eur Spine J. 1998;7:289–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mao SH, Jiang J, Sun X, Zhao Q, Qian BP, Liu Z, et al. Timing of menarche in Chinese girls with and without adolescent idiopathic scoliosis: current results and review of the literature. Eur Spine J. 2011;20:260–5.

    Article  PubMed  Google Scholar 

  44. Margetic S, Gazzola C, Pegg GG, Hill RA. Leptin: a review of its peripheral actions and interactions. Int J Obes Relat Metab Disord. 2002;26:1407–33.

    Article  CAS  PubMed  Google Scholar 

  45. Maria S, Witt-Enderby PA. Melatonin effects on bone: potential use for the prevention and treatment for osteopenia, osteoporosis, and periodontal disease and for use in bone-grafting procedures. J Pineal Res. 2014;56:115–25.

    Article  CAS  PubMed  Google Scholar 

  46. Marshall WA, Tanner JM. Growth and physiological development during adolescence. Annu Rev Med. 1968;19:283–300.

    Article  CAS  PubMed  Google Scholar 

  47. Mauras N, Rogol AD, Haymond MW, Veldhuis JD. Sex steroids, growth hormone, insulin-like growth factor-1: neuroendocrine and metabolic regulation in puberty. Horm Res. 1996;45:74–80.

    Article  CAS  PubMed  Google Scholar 

  48. Mendis-Handagama SM, Ariyaratne HB. Differentiation of the adult Leydig cell population in the postnatal testis. Biol Reprod. 2001;65:660–71.

    Article  CAS  PubMed  Google Scholar 

  49. Moon ES, Kim HS, Sharma V, Park JO, Lee HM, Moon SH, et al. Analysis of single nucleotide polymorphism in adolescent idiopathic scoliosis in Korea: for personalized treatment. Yonsei Med J. 2013;54:500–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Moreau A, Wang DS, Forget S, Azeddine B, Angeloni D, Fraschini F, et al. Melatonin signaling dysfunction in adolescent idiopathic scoliosis. Spine. 2004;29:1772–81.

    Article  PubMed  Google Scholar 

  51. Ng KY, Leong MK, Liang H, Paxinos G. Melatonin receptors: distribution in mammalian brain and their respective putative functions. Brain Struct Funct. 2017;222:2921.

    Article  CAS  PubMed  Google Scholar 

  52. Nikolova S, Yablanski V, Vlaev E, Getova G, Atanasov V, Stokov L, et al. In search of biomarkers for idiopathic scoliosis: leptin and BMP4 functional polymorphisms. J Biomark. 2015a;2015:425310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nikolova S, Yablanski V, Vlaev E, Stokov L, Savov A, Kremensky I. Association between estrogen receptor alpha gene polymorphisms and susceptibility to idiopathic scoliosis in Bulgarian patients: a case-control study. Open Access Maced J Med Sci. 2015b;3:278–82.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nikolova S, Yablanski V, Vlaev E, Stokov L, Savov AS, Kremensky IM. Association study between idiopathic scoliosis and polymorphic variants of VDR, IGF-1, and AMPD1 genes. Genet Res Int. 2015c;2015:852196.

    PubMed  PubMed Central  Google Scholar 

  55. Normelli H, Sevastik J, Ljung G, Aaro S, Jonsson-Soderstrom AM. Anthropometric data relating to normal and scoliotic Scandinavian girls. Spine. 1985;10:123–6.

    Article  CAS  PubMed  Google Scholar 

  56. Onaolapo OJ, Onaolapo AY. Melatonin, adolescence, and the brain: an insight into the period-specific influences of a multifunctional signaling molecule. Birth Defects Res. 2017;109:1659–71.

    Article  CAS  PubMed  Google Scholar 

  57. Peng Y, Liang G, Pei Y, Ye W, Liang A, Su P. Genomic polymorphisms of G-protein estrogen receptor 1 are associated with severity of adolescent idiopathic scoliosis. Int Orthop. 2012;36:671–7.

    Article  PubMed  Google Scholar 

  58. Prossnitz ER, Barton M. The G-protein-coupled estrogen receptor GPER in health and disease. Nat Rev Endocrinol. 2011;7:715–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Qiu XS, Tang NL, Yeung HY, Lee KM, Hung VW, Ng BK, et al. Melatonin receptor 1B (MTNR1B) gene polymorphism is associated with the occurrence of adolescent idiopathic scoliosis. Spine. 2007a;32:1748–53.

    Article  PubMed  Google Scholar 

  60. Qiu XS, Tang NL, Yeung HY, Qiu Y, Cheng JC. Genetic association study of growth hormone receptor and idiopathic scoliosis. Clin Orthop Relat Res. 2007b;462:53–8.

    Article  PubMed  Google Scholar 

  61. Qiu Y, Sun X, Qiu X, Li W, Zhu Z, Zhu F, et al. Decreased circulating leptin level and its association with body and bone mass in girls with adolescent idiopathic scoliosis. Spine. 2007c;32:2703–10.

    Article  PubMed  Google Scholar 

  62. Saggese G, Baroncelli GI, Bertelloni S. Puberty and bone development. Best Pract Res Clin Endocrinol Metab. 2002;16:53–64.

    Article  CAS  PubMed  Google Scholar 

  63. Sharma G, Prossnitz ER. GPER/GPR30 knockout mice: effects of GPER on metabolism. Methods Mol Biol. 2016;1366:489–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sharma G, Prossnitz ER. G-Protein-Coupled Estrogen Receptor (GPER) and sex-specific metabolic homeostasis. Adv Exp Med Biol. 2017;1043:427–53.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Shi B, Mao S, Liu Z, Sun X, Zhu Z, Zhu F, et al. Spinal growth velocity versus height velocity in predicting curve progression in peri-pubertal girls with idiopathic scoliosis. BMC Musculoskelet Disord. 2016;17:368.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Simpson ER. Aromatization of androgens in women: current concepts and findings. Fertil Steril. 2002;77(Suppl 4):S6–10.

    Article  PubMed  Google Scholar 

  67. Siu King Cheung C, Tak Keung Lee W, Kit Tse Y, Ping Tang S, Man Lee K, et al. Abnormal peri-pubertal anthropometric measurements and growth pattern in adolescent idiopathic scoliosis: a study of 598 patients. Spine. 2003;28:2152–7.

    Article  PubMed  Google Scholar 

  68. Srinivasan V, Spence WD, Pandi-Perumal SR, Zakharia R, Bhatnagar KP, Brzezinski A. Melatonin and human reproduction: shedding light on the darkness hormone. Gynecol Endocrinol. 2009;25:779–85.

    Article  CAS  PubMed  Google Scholar 

  69. Stokes IA, Windisch L. Vertebral height growth predominates over intervertebral disc height growth in adolescents with scoliosis. Spine. 2006;31:1600–4.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sun Q, Cornelis MC, Kraft P, Qi L, van Dam RM, Girman CJ, et al. Genome-wide association study identifies polymorphisms in LEPR as determinants of plasma soluble leptin receptor levels. Hum Mol Genet. 2010;19:1846–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Takahashi Y, Matsumoto M, Karasugi T, Watanabe K, Chiba K, Kawakami N, et al. Lack of association between adolescent idiopathic scoliosis and previously reported single nucleotide polymorphisms in MATN1, MTNR1B, TPH1, and IGF1 in a Japanese population. J Orthop Res. 2011;29:1055–8.

    Article  CAS  PubMed  Google Scholar 

  72. Tam EM, Liu Z, Lam TP, Ting T, Cheung G, Ng BK, et al. Lower muscle mass and body fat in adolescent idiopathic scoliosis are associated with abnormal leptin bioavailability. Spine. 2016;41:940–6.

    Article  PubMed  Google Scholar 

  73. Tang NL, Yeung HY, Lee KM, Hung VW, Cheung CS, Ng BK, et al. A relook into the association of the estrogen receptor [alpha] gene (PvuII, XbaI) and adolescent idiopathic scoliosis: a study of 540 Chinese cases. Spine. 2006;31:2463–8.

    Article  PubMed  Google Scholar 

  74. Tanner JM, Whitehouse RH, Marubini E, Resele LF. The adolescent growth spurt of boys and girls of the Harpenden growth study. Ann Hum Biol. 1976;3:109–26.

    Article  CAS  PubMed  Google Scholar 

  75. Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinol. 1999;140:1630–8.

    Article  CAS  Google Scholar 

  76. Ueno M, Takaso M, Nakazawa T, Imura T, Saito W, Shintani R, et al. A 5-year epidemiological study on the prevalence rate of idiopathic scoliosis in Tokyo: school screening of more than 250,000 children. J Orthop Sci. 2011;16:1–6.

    Article  PubMed  Google Scholar 

  77. Wang W, Wang Z, Zhu Z, Zhu F, Qiu Y. Body composition in males with adolescent idiopathic scoliosis: a case-control study with dual-energy X-ray absorptiometry. BMC Musculoskelet Disord. 2016a;17:107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang YJ, Yu HG, Zhou ZH, Guo Q, Wang LJ, Zhang HQ. Leptin receptor metabolism disorder in primary chondrocytes from adolescent idiopathic scoliosis girls. Int J Mol Sci. 2016b;17. pii: E1160.

    Article  CAS  PubMed Central  Google Scholar 

  79. Wei-Jun W, Xu S, Zhi-Wei W, Xu-Sheng Q, Zhen L, Yong Q. Abnormal anthropometric measurements and growth pattern in male adolescent idiopathic scoliosis. Eur Spine J. 2012;21:77–83.

    Article  PubMed  Google Scholar 

  80. Weinstein SL, Ponseti IV. Curve progression in idiopathic scoliosis. J Bone Joint Surg Am. 1983;65:447–55.

    Article  CAS  PubMed  Google Scholar 

  81. Weiss HR, Moramarco MM, Borysov M, Ng SY, Lee SG, Nan X, et al. Postural rehabilitation for adolescent idiopathic scoliosis during growth. Asian Spine J. 2016;10:570–81.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wynne-Davies R. Familial (idiopathic) scoliosis. A family survey. J Bone Joint Surg Br. 1968;50:24–30.

    Article  CAS  PubMed  Google Scholar 

  83. Yang M, Li C, Li M. The estrogen receptor alpha gene (XbaI, PvuII) polymorphisms and susceptibility to idiopathic scoliosis: a meta-analysis. J Orthop Sci. 2014;19:713–21.

    Article  CAS  PubMed  Google Scholar 

  84. Yang M, Wei X, Yang W, Li Y, Ni H, Zhao Y, et al. The polymorphisms of melatonin receptor 1B gene (MTNR1B) (rs4753426 and rs10830963) and susceptibility to adolescent idiopathic scoliosis: a meta-analysis. J Orthop Sci. 2015;20:593–600.

    Article  CAS  PubMed  Google Scholar 

  85. Yang Y, Wu Z, Zhao T, Wang H, Zhao D, Zhang J, et al. Adolescent idiopathic scoliosis and the single-nucleotide polymorphism of the growth hormone receptor and IGF-1 genes. Orthopedics. 2009;32:411.

    Article  PubMed  Google Scholar 

  86. Yasar P, Ayaz G, User SD, Gupur G, Muyan M. Molecular mechanism of estrogen-estrogen receptor signaling. Reprod Med Bio. 2017;16:4–20.

    Article  CAS  Google Scholar 

  87. Yeung HY, Tang NL, Lee KM, Ng BK, Hung VW, Kwok R, et al. Genetic association study of insulin-like growth factor-I (IGF-I) gene with curve severity and osteopenia in adolescent idiopathic scoliosis. Stud Health Technol Inform. 2006;123:18–24.

    PubMed  CAS  Google Scholar 

  88. Ylikoski M. Growth and progression of adolescent idiopathic scoliosis in girls. J Pediatr Orthop B. 2005;14:320–4.

    Article  PubMed  Google Scholar 

  89. Zamecnik J, Krskova L, Hacek J, Stetkarova I, Krbec M. Etiopathogenesis of adolescent idiopathic scoliosis: expression of melatonin receptors 1A/1B, calmodulin and estrogen receptor 2 in deep paravertebral muscles revisited. Mol Med Rep. 2016;14:5719–24.

    Article  CAS  PubMed  Google Scholar 

  90. Zhao L, Roffey DM, Chen S. Association between the Estrogen Receptor Beta (ESR2) Rs1256120 single nucleotide polymorphism and adolescent idiopathic scoliosis: a systematic review and meta-analysis. Spine. 2017;42:871–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan J. Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McCallum-Loudeac, J., Wilson, M.J. (2018). Adolescence and Scoliosis: Deciphering the Complex Biology of Puberty and Scoliosis. In: Kusumi, K., Dunwoodie, S. (eds) The Genetics and Development of Scoliosis. Springer, Cham. https://doi.org/10.1007/978-3-319-90149-7_8

Download citation

Publish with us

Policies and ethics