Porcine Epidemic Diarrhea Virus

  • Zayn Khamis
  • Rima MenassaEmail author


Porcine epidemic diarrhea virus (PEDv) causes disease and mortality to piglets worldwide. Most vaccines used to combat the disease have been ineffective live attenuated virus vaccines. Research has emerged showing both the spike (S) and membrane (M) proteins of the virus have potential for use as subunit vaccines. This research has been largely undertaken using plants as expression platforms, with some promising candidates having emerged.


Porcine epidemic diarrhea virus Recombinant protein Subunit vaccine Coronavirus Plant biotechnology 


  1. Alonso C, Goede DP, Morrison RB et al (2014) Evidence of infectivity of airborne porcine epidemic diarrhea virus and detection of airborne viral RNA at long distances from infected herds. Vet Res 45:73CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bae JL, Lee JG, Kang TJ et al (2003) Induction of antigen-specific systemic and mucosal immune responses by feeding animals transgenic plants expressing the antigen. Vaccine 21:4052–4058CrossRefPubMedGoogle Scholar
  3. Bosch BJ, Van Der Zee R, CaM De Haan et al (2003) The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol 77:8801–8811CrossRefPubMedPubMedCentralGoogle Scholar
  4. Calvo-Pinilla E, Castillo-Olivares J, Jabbar T et al (2014) Recombinant vaccines against bluetongue virus. Virus Res 182:78–86CrossRefPubMedGoogle Scholar
  5. Chang SH, Bae JL, Kang TJ et al (2002) Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus. Mol Cells 14:295–299PubMedGoogle Scholar
  6. Chen J, Wang C, Shi H et al (2010) Molecular epidemiology of porcine epidemic diarrhea virus in China. Arch Virol 155:1471–1476CrossRefPubMedGoogle Scholar
  7. Chen Q, Li G, Stasko J et al (2014) Isolation and characterization of porcine epidemic diarrhea viruses associated with the 2013 disease outbreak among swine in the United States. J Clin Microbiol 52:234–243CrossRefPubMedPubMedCentralGoogle Scholar
  8. Conley AJ, Zhu H, Le LC et al (2011) Recombinant protein production in a variety of Nicotiana hosts: a comparative analysis. Plant Biotechnol J 9:434–444CrossRefPubMedGoogle Scholar
  9. Cruz DJ, Kim CJ, Shin HJ (2008) The GPRLQPY motif located at the carboxy-terminal of the spike protein induces antibodies that neutralize Porcine epidemic diarrhea virus. Virus Res 132:192–196CrossRefPubMedGoogle Scholar
  10. D’aoust MA, Lavoie PO, Couture MM et al (2008) Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnol J 6:930–940CrossRefPubMedGoogle Scholar
  11. Ducatelle R, Coussement W, Pensaert MB et al (1981) In vivo morphogenesis of a new porcine enteric coronavirus, CV 777. Arch Virol 68:35–44CrossRefPubMedGoogle Scholar
  12. Ge JW, Liu DQ, Li YJ (2012) Construction of recombinant lactobacilli expressing the core neutralizing epitope (COE) of porcine epidemic diarrhea virus and a fusion protein consisting of COE and Escherichia coli heat-labile enterotoxin B, and comparison of the immune responses by orogastric immunization. Can J Microbiol 58:1258–1267CrossRefPubMedGoogle Scholar
  13. Godet M, L’haridon R, Vautherot JF et al (1992) TGEV corona virus ORF4 encodes a membrane protein that is incorporated into virions. Virology 188:666–675CrossRefPubMedGoogle Scholar
  14. Grasland B, Bigault L, Bernard C et al (2015) Complete genome sequence of a porcine epidemic diarrhea s gene indel strain isolated in France in December 2014. Genome Announc 3Google Scholar
  15. Hain KS, Joshi LR, Okda F et al (2016) Immunogenicity of a recombinant parapoxvirus expressing the spike protein of Porcine epidemic diarrhea virus. J Gen Virol 97:2719–2731CrossRefPubMedGoogle Scholar
  16. Hanke D, Jenckel M, Petrov A et al (2015) Comparison of porcine epidemic diarrhea viruses from Germany and the United States, 2014. Emerg Infect Dis 21:493–496CrossRefPubMedPubMedCentralGoogle Scholar
  17. Harrisvaccines I (2015) SirraVax platform. Accessed 4 Jan 2018
  18. He Y, Zhou Y, Siddiqui P et al (2005) Identification of immunodominant epitopes on the membrane protein of the severe acute respiratory syndrome-associated coronavirus. J Clin Microbiol 43:3718–3726CrossRefPubMedPubMedCentralGoogle Scholar
  19. Huang YW, Dickerman AW, Pineyro P et al (2013) Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States. MBio 4:e00737–00713CrossRefPubMedPubMedCentralGoogle Scholar
  20. Huy NX, Kim YS, Jun SC et al (2009) Production of a Heat-labile Enterotoxin B Subunit-porcine Epidemic Diarrhea Virus-neutralizing Epitope Fusion Protein in Transgenic Lettuce (Lactuca sativa). Biotechnol Bioproc E 14:731–737CrossRefGoogle Scholar
  21. Huy NX, Yang MS, Kim TG (2011) Expression of a cholera toxin B subunit-neutralizing epitope of the porcine epidemic diarrhea virus fusion gene in transgenic lettuce (Lactuca sativa L.). Mol Biotechnol 48:201–209CrossRefPubMedGoogle Scholar
  22. Huy NX, Kim SH, Yang MS et al (2012) Immunogenicity of a neutralizing epitope from porcine epidemic diarrhea virus: M cell targeting ligand fusion protein expressed in transgenic rice calli. Plant Cell Rep 31:1933–1942CrossRefPubMedGoogle Scholar
  23. John SES, Anson BJ, Mesecar AD (2016) X-Ray structure and inhibition of 3C-like protease from porcine epidemic diarrhea virus. Sci Rep 6Google Scholar
  24. Jung K, Saif LJ (2015) Porcine epidemic diarrhea virus infection: etiology, epidemiology, pathogenesis and immunoprophylaxis. Vet J 204:134–143CrossRefPubMedGoogle Scholar
  25. Jung K, Wang Q, Scheuer KA et al (2014) Pathology of US porcine epidemic diarrhea virus strain PC21A in gnotobiotic pigs. Emerg Infect Dis 20:662–665CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kang TJ, Kang KH, Kim JA et al (2004) High-level expression of the neutralizing epitope of porcine epidemic diarrhea virus by a tobacco mosaic virus-based vector. Protein Expr Purif 38:129–135CrossRefPubMedGoogle Scholar
  27. Kang TJ, Kim YS, Jang YS et al (2005a) Expression of the synthetic neutralizing epitope gene of porcine epidemic diarrhea virus in tobacco plants without nicotine. Vaccine 23:2294–2297CrossRefPubMedGoogle Scholar
  28. Kang TJ, Seo JE, Kim DH et al (2005b) Cloning and sequence analysis of the Korean strain of spike gene of porcine epidemic diarrhea virus and expression of its neutralizing epitope in plants. Protein Expr Purif 41:378–383CrossRefPubMedGoogle Scholar
  29. Kang TJ, Han SC, Yang MS et al (2006) Expression of synthetic neutralizing epitope of porcine epidemic diarrhea virus fused with synthetic B subunit of Escherichia coli heat-labile enterotoxin in tobacco plants. Protein Expr Purif 46:16–22CrossRefPubMedGoogle Scholar
  30. Khamis Z (2016) Producing a subunit vaccine for porcine epidemic diarrhea virus. Dissertation, The University of Western OntarioGoogle Scholar
  31. Kim Y-S, Kwon T-H, Yang M-S (2003) Expression of porcine epidemic diarrhea virus spike gene in transgenic carrot plants. Korean J Plant Resour 6:108–113Google Scholar
  32. Kim YS, Kang TJ, Jang YS et al (2005) Expression of neutralizing epitope of porcine epidemic diarrhea virus in potato plants. Plant Cell Tissue Organ Cult 82:125–130CrossRefGoogle Scholar
  33. King AMQ (ed) (2011) Virus taxonomy: classification and nomenclature of viruses: Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier, New YorkGoogle Scholar
  34. Ko SM, Sun HJ, Oh MJ et al (2011) Expression of the protective antigen for PEDV in transgenic duckweed, Lemna minor. Hortic Environ Biotech 52:511–515CrossRefGoogle Scholar
  35. Kun M, Bing Y, Jing X et al (2014) Expression of core neutralizing epitope gene of porcine epidemic diarrhea virus in maize. J Agric Sci Technol 16:28–35Google Scholar
  36. Lee C (2015) Porcine epidemic diarrhea virus: an emerging and re-emerging epizootic swine virus. Virol J 12:193CrossRefPubMedPubMedCentralGoogle Scholar
  37. Li BX, Ge JW, Li YJ (2007) Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus. Virology 365:166–172CrossRefPubMedGoogle Scholar
  38. Li W, Li H, Liu Y et al (2012) New variants of porcine epidemic diarrhea virus, China, 2011. Emerg Infect Dis 18:1350–1353CrossRefPubMedPubMedCentralGoogle Scholar
  39. Liu J, Sun Y, Qi J et al (2010) The membrane protein of severe acute respiratory syndrome coronavirus acts as a dominant immunogen revealed by a clustering region of novel functionally and structurally defined cytotoxic T-lymphocyte epitopes. J Infect Dis 202:1171–1180CrossRefPubMedGoogle Scholar
  40. Lowe J, Gauger P, Harmon K et al (2014) Role of transportation in spread of porcine epidemic diarrhea virus infection, United States. Emerg Infect Dis 20:872–874CrossRefPubMedPubMedCentralGoogle Scholar
  41. Makadiya N, Brownlie R, Van Den Hurk J et al (2016) S1 domain of the porcine epidemic diarrhea virus spike protein as a vaccine antigen. Virol J 13:57CrossRefPubMedPubMedCentralGoogle Scholar
  42. Martelli P, Lavazza A, Nigrelli AD et al (2008) Epidemic of diarrhoea caused by porcine epidemic diarrhoea virus in Italy. Vet Rec 162:307–310CrossRefPubMedGoogle Scholar
  43. Masuda T, Murakami S, Takahashi O et al (2015) New porcine epidemic diarrhoea virus variant with a large deletion in the spike gene identified in domestic pigs. Arch Virol 160:2565–2568CrossRefPubMedGoogle Scholar
  44. Nagy B, Nagy G, Meder M et al (1996) Enterotoxigenic Escherichia coli, rotavirus, porcine epidemic diarrhoea virus, adenovirus and calici-like virus in porcine postweaning diarrhoea in Hungary. Acta Vet Hung 44:9–19PubMedGoogle Scholar
  45. Neuman BW, Kiss G, Kunding AH et al (2011) A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol 174:11–22CrossRefPubMedGoogle Scholar
  46. Ojkic D, Hazlett M, Fairles J et al (2015) The first case of porcine epidemic diarrhea in Canada. Can Vet J 56:149–152PubMedPubMedCentralGoogle Scholar
  47. Oszvald M, Kang TJ, Tomoskozi S et al (2007) Expression of a synthetic neutralizing epitope of porcine epidemic diarrhea virus fused with synthetic B subunit of Escherichia coli heat labile enterotoxin in rice endosperm. Mol Biotechnol 35:215–223CrossRefPubMedGoogle Scholar
  48. Pang H, Liu Y, Han X et al (2004) Protective humoral responses to severe acute respiratory syndrome-associated coronavirus: implications for the design of an effective protein-based vaccine. J Gen Virol 85:3109–3113CrossRefPubMedGoogle Scholar
  49. Pasick J, Berhane Y, Ojkic D et al (2014) Investigation into the role of potentially contaminated feed as a source of the first-detected outbreaks of porcine epidemic diarrhea in Canada. Transbound Emerg Dis 61:397–410CrossRefPubMedPubMedCentralGoogle Scholar
  50. Pensaert MB, De Bouck P (1978) A new coronavirus-like particle associated with diarrhea in swine. Arch Virol 58:243–247CrossRefPubMedGoogle Scholar
  51. Prentice E, Mcauliffe J, Lu X et al (2004) Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins. J Virol 78:9977–9986CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sato T, Takeyama N, Katsumata A et al (2011) Mutations in the spike gene of porcine epidemic diarrhea virus associated with growth adaptation in vitro and attenuation of virulence in vivo. Virus Genes 43:72–78CrossRefPubMedGoogle Scholar
  53. Song D, Park B (2012) Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines. Virus Genes 44:167–175CrossRefPubMedGoogle Scholar
  54. Song DS, Oh JS, Kang BK et al (2007) Oral efficacy of Vero cell attenuated porcine epidemic diarrhea virus DR13 strain. Res Vet Sci 82:134–140CrossRefPubMedGoogle Scholar
  55. Stevenson GW, Hoang H, Schwartz KJ et al (2013) Emergence of porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences. J Vet Diagn Invest 25:649–654CrossRefPubMedGoogle Scholar
  56. Sueyoshi M, Tsuda T, Yamazaki K et al (1995) An immunohistochemical investigation of porcine epidemic diarrhoea. J Comp Pathol 113:59–67CrossRefPubMedGoogle Scholar
  57. Sun D, Feng L, Shi H et al (2006) Spike protein region (aa 636–789) of porcine epidemic diarrhea virus is essential for induction of neutralizing antibodies. Acta Virol 51:149–156Google Scholar
  58. Sun RQ, Cai RJ, Chen YQ et al (2012) Outbreak of porcine epidemic diarrhea in suckling piglets, China. Emerg Infect Dis 18:161–163CrossRefPubMedPubMedCentralGoogle Scholar
  59. Tamás L (2010) Molecular farming, using the cereal endosperm as bioreactor. Acta Agron Hung 58:55–64CrossRefGoogle Scholar
  60. Utiger A, Tobler K, Bridgen A et al (1995) Identification of the membrane protein of porcine epidemic diarrhea virus. Virus Genes 10:137–148CrossRefPubMedGoogle Scholar
  61. Van Noi N, Chung Y-C (2017) Optimization of expression and purification of recombinant S1 domain of the porcine epidemic diarrhea virus spike (PEDV- S1) protein in Escherichia coli. Biotechnol Biotechnol Equip 31:619–629CrossRefGoogle Scholar
  62. Wang K, Lu W, Chen J et al (2012) PEDV ORF3 encodes an ion channel protein and regulates virus production. FEBS Lett 586:384–391CrossRefPubMedGoogle Scholar
  63. Woods RD, Wesley RD, Kapke PA (1988) Neutralization of porcine transmissible gastroenteritis virus by complement-dependent monoclonal antibodies. Am J Vet Res 49:300–304PubMedGoogle Scholar
  64. Xue S, Jaszewski A, Perlman S (1995) Identification of a CD4+ T cell epitope within the M protein of a neurotropic coronavirus. Virology 208:173–179CrossRefPubMedGoogle Scholar
  65. Yang K-S, Lim S, Kwon S-Y et al (2005) Transgenic sweet potato (Ipomoea batatas) expressing spike gene of porcine epidemic diarrhea virus. J Plant Biotech 32:263–268CrossRefGoogle Scholar
  66. Zhang Z, Chen J, Shi H et al (2012) Identification of a conserved linear B-cell epitope in the M protein of porcine epidemic diarrhea virus. Virol J 9:225CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zoetis (2016) Porcine epidemic diarrhea vaccine. Accessed July 2017

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Agriculture and Agri-Food Canada, London Research and Development CentreLondonCanada
  2. 2.Department of BiologyThe University of Western OntarioLondonCanada

Personalised recommendations