Skip to main content

Soil Carbon and the Carbon Cycle in the Central Amazon Forest

  • Chapter
  • First Online:
Igapó (Black-water flooded forests) of the Amazon Basin

Abstract

Amazonia is the highest biological diversity forest in the world, with also an intense energy and carbon cycle exchange among the global ecosystems. The works bring what is more relevant to carbon balance studies in the Amazon. Presenting about organic and inorganic carbon, including soil, atmosphere, plant, decomposition, deforestation, fire, logging and river carbon emission/sink, the quantification of carbon balance in one ecosystem is still very difficult, especially in the Amazon region. And the uncertainties of the total carbon stock estimates will eventually be reduced when field inventories and the geographical distance in the Amazon region match and increase the reliability of measurements to allow a better understanding of all possible factors driven the local carbon stock. We hope that this work gives us the most recent information about central Amazon carbon cycle and also Amazon soil emission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson AB (1981) White-sand vegetation of Brazilian Amazonia. Biotropica 13(3):199–210

    Article  Google Scholar 

  • Baccini A, Goetz SJ, Walker WS, Laporte NT, Sun M, Sulla-Menashe D, Hackler J, Beck PSA, Dubayah R, Friedl MA, Samanta S, Houghton RA (2012) Estimated carbon dioxide emissions from tropical deforestation improved by carbon–density maps. Nat Clim Chang 2(3):182–185

    Article  CAS  Google Scholar 

  • Becker P (1996) Sap flow in Bornean heath and dipterocarp forest trees during wet and dry periods. Tree Physiol 16:295–299

    Article  Google Scholar 

  • Butler JHA, Buckerfield JC (1979) Digestion of lignin by termites. Soil Biol Biochem 11(5):507–513

    Article  CAS  Google Scholar 

  • Chapin FSIII, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology, 1st edn. Springer-Verlag, Inc., New York

    Google Scholar 

  • Chauvel A, Lucas Y, Boulet R (1987) On the genesis of the soil mantle of the region of Manaus, Central Amazonia, Brazil. Experientia 43:234–241

    Article  Google Scholar 

  • Davidson EA, de Araujo AC, Artaxo P, Balch JK, Brown IF, Bustamante MMC, Coe MT, DeFries RS, Keller M, Longo M, Munger JW, Schroeder W, Soares-Filho BS, Souza CM, Wofsy SC (2012) The amazon basin in transition. Nature 481:321–328

    Article  CAS  Google Scholar 

  • DeFries RS, Morton DC, van der Werf GR, Giglio L, Collatz GJ, Randerson JT, Houghton RA, Kasibhatla PK, Shimabukuro Y (2008) Fire-related carbon emissions from land use transitions in southern Amazonia. Geophys Res Lett 35:L22705

    Article  Google Scholar 

  • Devol AH, Richey JE, Clark WA, King SL, Martinelli LA (1988) Methane emissions to the troposphere from the Amazon floodplain. J Geophys Res 93(D2):1583–1592

    Article  CAS  Google Scholar 

  • Gruber N, Friedlingstein P, Field CB, Valentini R, Heimann M, Richey JE, Lankao PR, Schulze ED, Chen CTA (2004) The vulnerability of the carbon cycle in the 21st century: an assessment of carbon-climate- human interactions. In: Field CB, Raupach MR (eds) SCOPE 62: the global carbon cycle. Washington, Covelo. Island Press, London

    Google Scholar 

  • Guillaumet JL (1987) Some structural and floristic aspects of the forest. Experientia 43(3):241–251

    Article  Google Scholar 

  • Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (1995) Climate change 1995, the science of climate change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • IBGE. Instituto Brasileiro de Geografia e Estatística (1997) Diagnostico Ambiental da Amazonia Legal. CD-ROM

    Google Scholar 

  • INPE. Instituto Nacional de Pesquisas espaciais (2008) Monitoramento da cobertura florestal da Amazônia por satélites sistemas prodes, deter, degrad e queimadas 2007–2008 (Monitoring the Brazilian Amazonia Forest by Satellite). Instituto Nacional de Pesquisas Espaciais. Accessed on November of 2017

    Google Scholar 

  • Janzen HH (2004) Carbon cycling in earth systems–a soil science perspective. Agric Ecosyst Environ 104(3):399–417

    Article  CAS  Google Scholar 

  • Junk WJ (1993) Wetlands of tropical South America. In: Whigham D, Hejny S, Dykyjova D (eds) Wetlands of the world. Junk Publications, Dordrecht, pp 679–739

    Google Scholar 

  • Junk WJ, Piedade MTF, Lourival R, Wittmann F, Kandus P, Lacerda LD, Bozelli RL, Esteves FA, Nunes da Cunha C, Maltchik L et al (2013) Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquat Conserv Mar Freshwat Ecosyst 24:5–22

    Article  Google Scholar 

  • Klinge H, Medina E (1979) Rio Negro caatingas and Campinas, Amazonas states of Venezuela and Brazil. In: Specht RL (ed) Ecosystems of the world: heathlands and related shrublands. Ecosystems of the world, vol 9A. Elsevier, Amsterdam, pp 483–488

    Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627. https://doi.org/10.1126/science.1097396

    Article  CAS  Google Scholar 

  • Luizão FJ (1996) Ecological studies in three contrasting forest types in central Amazonia. PhD thesis, University of Stirling, Scottland, UK

    Google Scholar 

  • Luizão FJ, Schubart HOR (1987) Litter production and decomposition in a terra-firme forest of Central Amazonia. Experientia 43:259–265

    Article  Google Scholar 

  • Luizão RCC, Luizão FJ, Paiva RQ, Monteiro TF, Sousa LS, Kruijt B (2004) Variation of carbon and nitrogen cycling processes along a topo- graphic gradient in a central Amazonian forest. Glob Chang Biol 10(5):592–600

    Article  Google Scholar 

  • Luizão FJ, Luizão RCC, Proctor J (2007) Soil acidity and nutrient deficiency in central Amazonian heath forest soils. Plant Ecol 192(2):209–224, 10

    Article  Google Scholar 

  • Malhi Y, Grace J (2000) Tropical forests and atmospheric carbon dioxide. Trends Ecol Evol 15:332–337

    Article  CAS  Google Scholar 

  • McClain ME, Richey JE (1996) Regional-scale linkages of terrestrial and lotic ecosystems in the Amazon basin: a conceptual model for organic matter. Arch Hydrobiol., Suppl. 113, Large Rivers 10(1–4):111–125

    Google Scholar 

  • McClain ME, Richey JE, Brandes JA, Pimentel TP (1997) Dissolved organic matter and terrestrial-lotic linkages in the Central Amazon Basin of Brazil. Glob Biogeochem Cycles 11(3):295–311

    Article  Google Scholar 

  • Pate JS, Lyzell DB (1990) Energetic and biological cost of nitrogen assimilation. In: Biochemistry of plants, Intermediary nitrogen metabolism, vol 16. Academic Publishing, San Diego, pp 1–42

    Google Scholar 

  • Phillips OL, Aragão LEOC, Lewis SL et al (2009) Drought sensitivity of the Amazon rainforest. Science 323(5919):1344

    Article  CAS  Google Scholar 

  • Prance GT (1979) Notes on the vegetation of Amazonia iii. The terminology of amazonian forest types subject to inundation. Brittonia 31(1):26–38

    Article  Google Scholar 

  • Prance GT, Schubart HOR (1978) Notes on the vegetation of Amazonia I. A preliminary note on the origin of the open white sand Campinas of the lower Rio Negro. Brittonia 30(1):60–63

    Article  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS, Uhl C (1994) Photosynthesis-nitrogen relations in Amazonian tree species. I. Patterns among species and communities. Oecologia 97:62–72

    Article  CAS  Google Scholar 

  • Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess L (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620

    Article  CAS  Google Scholar 

  • Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, Petrova S, White L, Silman M, Morel A (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 108(24):9899–9904

    Article  CAS  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Singer R, Aguiar IA (1986) Litter decomposing and ectomycorrhizal Basid- iomycetes in an igapó forest. Plant Syst Evol 153(1–2):107–117

    Article  Google Scholar 

  • Soares-Filho BS, Nepstad DC, Curran LM, Cerqueira GC, Garcia RA, Ramos CA, Voll E, McDonald A, Lefebvre P, Schlesinger P (2006) Modelling conservation in the Amazon basin. Nature 440(7083):520–523

    Article  CAS  Google Scholar 

  • Sobrado MA, Medina E (1980) General morphology, anatomical structure, and nutrient content of sclerophyllous leaves of the ‘bana’ vegetation of Amazonas. Oecologia 45:341–345

    Article  CAS  Google Scholar 

  • Su B (2005) Interactions between ecosystem carbon, nitrogen and water cycles under global change: results from field and mesocosm experiments, PhD thesis, The University of Oklahoma

    Google Scholar 

  • Trumbore SE, Chadwick OA, Amundson R (1996) Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272:393–396

    Article  CAS  Google Scholar 

  • Tyree MT, Patiño S, Becker P (1998) Vulnerability to drought-induced embolism of Bornean heath and dipterocarp forest trees. Tree Physiol 18:583–588

    Article  Google Scholar 

  • Van Der Werf GR, Morton DC, DeFries RS, Olivier JGJ, Kasibhatla PS, Jackson RB, Collatz GJ, Randerson JT (2009) CO2 emissions from forest loss. Nat Geosci 2:737–738

    Article  Google Scholar 

  • Vitousek PM, Sanford RL (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167

    Article  Google Scholar 

  • Walker I (1987) Conclusion. The forest as a functional entity. Experientia 43(3):287–290

    Article  Google Scholar 

  • Wang Y, Amundson R, Trumbore S (1999) The impact of land use change on C turnover in soils. Glob Biogeochem Cycles 13(1):47–57

    Article  CAS  Google Scholar 

  • Waterloo MJ, Oliveira SM, Drucker DP, Nobre AD, Cuartas LA, Hodnett MG, Langedijk I, Jans WWP, Tomasella J, de Araújo AC, Pimentel TP, Munera Estrada JC (2006) Export of organic carbon in run- off from an Amazonian rainforest Blackwater catchment. Hydrol Process 20:2581–2597

    Article  CAS  Google Scholar 

  • Zanchi FB (2013) Vulnerability to drought and soil carbon exchange of valley forest in Central Amazonia (Brazil). PhD. Thesis, Vrije Universiteit Amsterdam

    Google Scholar 

  • Zanchi FB, Waterloo MJ, Dolman AJ, Groenendijk M, Kesselmeier J, Kruijt B, Bolson MA, Luizão FJ, Manzi AO (2011) Influence of drainage status on soil and water chemistry, litter decomposition and soil respiration in central Amazonian forests on sandy soils. Ambi-Agua, Taubat 6(1):6–29

    Article  Google Scholar 

  • Zanchi FB, Waterloo MJ, Kruijt B, Kesselmeier J, Luizão FJ, Dolman AJ (2012) Soil CO2 efflux in Central Amazonia: environmental and methodological effects. Acta Amaz 42(2):173–184

    Article  CAS  Google Scholar 

  • Zanchi FB, Waterloo MJ, Peralta Tapia A, Alvarado Barrientos MS, Bolson MA, Luizão FJ, Manzi AO, Dolman AJ (2015) Water balance, nutrient and carbon export from a heath forest catchment in central Amazonia, Brazil, Hydrol. Processes, https://doi.org/10.1002/hyp.10458

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrício Berton Zanchi PhD. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zanchi, F.B. (2018). Soil Carbon and the Carbon Cycle in the Central Amazon Forest. In: Myster, R. (eds) Igapó (Black-water flooded forests) of the Amazon Basin. Springer, Cham. https://doi.org/10.1007/978-3-319-90122-0_4

Download citation

Publish with us

Policies and ethics