Advertisement

Social Search

Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10100)

Abstract

Today, most people find what they are looking for online by using search engines such as Google, Bing, or Baidu. Modern web search engines have evolved from their roots in information retrieval to developing new ways to cope with the unique nature of web search. In this chapter, we review recent research that aims to make search a more social activity by combining readily available social signals with various strategies for using these signals to influence or adapt more conventional search results. The chapter begins by framing the social search landscape in terms of the sources of data available and the ways in which this can be leveraged before, during, and after search. This includes a number of detailed case studies that serve to mark important milestones in the evolution of social search research and practice.

References

  1. 1.
    Abel, F., Baldoni, M., Baroglio, C., Henze, N., Krause, D., Patti, V.: Context-based ranking in folksonomies. In: Proceedings of the 20th ACM Conference on Hypertext and Hypermedia, pp. 209–218. ACM (2009)Google Scholar
  2. 2.
    Abel, F., Frank, M., Henze, N., Krause, D., Plappert, D., Siehndel, P.: GroupMe! - where semantic web meets web 2.0. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 871–878. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76298-0_63CrossRefGoogle Scholar
  3. 3.
    Abel, F., Gao, Q., Houben, G.-J., Tao, K.: Analyzing user modeling on Twitter for personalized news recommendations. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 1–12. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22362-4_1CrossRefGoogle Scholar
  4. 4.
    Aggarwal, N., Buitelaar, P.: Query expansion using Wikipedia and DBpedia. In: Forner, P., Karlgren, J., Womser-Hacker, C. (eds.) CLEF (Online Working Notes/Labs/Workshop) (2012)Google Scholar
  5. 5.
    Agichtein, E., Brill, E., Dumais, S.: Improving web search ranking by incorporating user behavior information. In: The 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 19–26. ACM Press (2006)Google Scholar
  6. 6.
    Agichtein, E., Brill, E., Dumais, S., Ragno, R.: Learning user interaction models for predicting web search result preferences. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 3–10. ACM (2006)Google Scholar
  7. 7.
    Agrawal, R., Golshan, B., Papalexakis, E.: Whither social networks for web search? In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1661–1670. ACM (2015)Google Scholar
  8. 8.
    Ahn, J.W., Farzan, R., Brusilovsky, P.: Social search in the context of social navigation. J. Korean Soc. Inf. Manag. 23(2), 147–165 (2006)Google Scholar
  9. 9.
    Alhindi, A., Kruschwitz, U., Fox, C., Albakour, D.: Profile-based summarisation for web site navigation. ACM Trans. Inf. Syst. 33(1), 4 (2015)CrossRefGoogle Scholar
  10. 10.
    Almeida, R.B., Almeida, V.A.F.: A community-aware search engine. In: The Thirteenth International World Wide Web Conference, WWW 2004, pp. 413–421. ACM Press (2004)Google Scholar
  11. 11.
    Alonso, O., Bannur, S., Khandelwal, K., Kalyanaraman, S.: The world conversation: web page metadata generation from social sources. In: Proceedings of the 24th International Conference on World Wide Web, pp. 385–395. ACM (2015)Google Scholar
  12. 12.
    Amatriain, X., Lathia, N., Pujol, J.M., Kwak, H., Oliver, N.: The wisdom of the few: a collaborative filtering approach based on expert opinions from the web. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 532–539. ACM (2009)Google Scholar
  13. 13.
    Amitay, E., Carmel, D., Har’El, N., Koifman, S.O., Soffer, A., Yogev, S., Golbandi, N.: Social search and discovery using a unified approach. In: Proceedings of the 20th ACM Conference on Hypertext and Hypermedia, pp. 199–208. ACM (2009)Google Scholar
  14. 14.
    Amitay, E., Darlow, A., Konopnicki, D., Weiss, U.: Queries as anchors: selection by association. In: Proceedings of the 16th ACM Conference on Hypertext and Hypermedia, pp. 193–201 (2005)Google Scholar
  15. 15.
    Arguello, J., Elsas, J.L., Callan, J., Carbonell, J.: Document representation and query expansion models for blog recommendation. In: 2nd International Conference on Weblogs and Social Media, ICWSM 2008, pp. 10–18 (2008)Google Scholar
  16. 16.
    Ashyralyyev, S., Cambazoglu, B.B., Aykanat, C.: Incorporating the surfing behavior of web users into PageRank. In: 22nd ACM International Conference on Information and Knowledge Management, pp. 2351–2356. ACM (2013)Google Scholar
  17. 17.
    Baeza-Yates, R., Hurtado, C., Mendoza, M.: Improving search engines by query clustering. J. Am. Soc. Inf. Sci. Technol. 58(12), 1793–1804 (2007)CrossRefGoogle Scholar
  18. 18.
    Baeza-Yates, R., Tiberi, A.: Extracting semantic relations from query logs. In: KDD 2007: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 76–85. ACM (2007)Google Scholar
  19. 19.
    Baeza-Yates, R.A., Hurtado, C.A., Mendoza, M.: Query recommendation using query logs in search engines. In: Current Trends in Database Technology - EDBT 2004 Workshops, Heraklion, Crete, Greece, 14–18 March 2004, Revised Selected Papers, pp. 588–596 (2004)CrossRefGoogle Scholar
  20. 20.
    Balfe, E., Smyth, B.: Improving web search through collaborative query recommendation. In: Proceedings of the 16th European Conference on Artificial Intelligence, pp. 268–272 (2004)Google Scholar
  21. 21.
    Bao, S., Xue, G., Wu, X., Yu, Y., Fei, B., Su, Z.: Optimizing web search using social annotations. In: Proceedings of the 16th International Conference on World Wide Web, Banff, Alberta, Canada, 8–12 May 2007, pp. 501–510 (2007)Google Scholar
  22. 22.
    Baraglia, R., Cacheda, F., Carneiro, V., Fernández, D., Formoso, V., Perego, R., Silvestri, F.: Search shortcuts: a new approach to the recommendation of queries. In: Proceedings of the 2009 ACM Conference on Recommender Systems, pp. 77–84 (2009)Google Scholar
  23. 23.
    Barrett, R., Maglio, P.P.: Intermediaries: an approach to manipulating information streams. IBM Syst. J. 38(4), 629–641 (1999)CrossRefGoogle Scholar
  24. 24.
    Bilenko, M., White, R.W.: Mining the search trails of surfing crowds: identifying relevant websites from user activity. In: The 17th International Conference on World Wide Web, pp. 51–60. ACM (2008)Google Scholar
  25. 25.
    Billerbeck, B., Scholer, F., Williams, H.E., Zobel, J.: Query expansion using associated queries. In: Proceedings of the Twelfth International Conference on Information and Knowledge Management, pp. 2–9. ACM, New York (2003)Google Scholar
  26. 26.
    Bischoff, K., Firan, C.S., Nejdl, W., Paiu, R.: Can all tags be used for search? In: Shanahan, J.G., Amer-Yahia, S., Zhang, Y., Kolcz, A., Chowdhury, A., Kelly, D. (eds.) The 17th ACM Conference on Conference on Information and Knowledge Management, pp. 203–212. ACM Press (2008)Google Scholar
  27. 27.
    Bollmann-Sdorra, P., Raghavan, V.V.: On the delusiveness of adopting a common space for modeling IR objects: are queries documents? J. Am. Soc. Inf. Sci. 44(10), 579–587 (1993)CrossRefGoogle Scholar
  28. 28.
    Borisov, A., Markov, I., de Rijke, M., Serdyukov, P.: A neural click model for web search. In: Proceedings of the 25th International Conference on World Wide Web, pp. 531–541. International World Wide Web Conferences Steering Committee (2016)Google Scholar
  29. 29.
    Boros, E., Kantor, P.B., Neu, D.J.: Pheromonic representation of user quests by digital structures. In: Proceedings of the 62nd Annual Meeting of the American Society for Information Science, pp. 633–642 (1999)Google Scholar
  30. 30.
    Boydell, O., Smyth, B.: From social bookmarking to social summarization: an experiment in community-based summary generation. In: Proceedings of the 2007 International Conference on Intelligent User Interfaces, 28–31 January 2007, Honolulu, Hawaii, USA, pp. 42–51 (2007)Google Scholar
  31. 31.
    Boydell, O., Smyth, B.: Social summarization in collaborative web search. Inf. Process. Manag. 46(6), 782–798 (2010)CrossRefGoogle Scholar
  32. 32.
    Briggs, P., Smyth, B.: On the role of trust in collaborative web search. Artif. Intell. Rev. 25(1–2), 97–117 (2006)Google Scholar
  33. 33.
    Briggs, P., Smyth, B.: Harnessing trust in social search. In: Advances in Information Retrieval, 29th European Conference on IR Research, Rome, Italy, 2–5 April 2007, Proceedings, pp. 525–532 (2007)Google Scholar
  34. 34.
    Briggs, P., Smyth, B.: Trusted search communities. In: Proceedings of the 2007 International Conference on Intelligent User Interfaces, 28–31 January 2007, Honolulu, Hawaii, USA, pp. 337–340 (2007)Google Scholar
  35. 35.
    Briggs, P., Smyth, B.: Provenance, trust, and sharing in peer-to-peer case-based web search. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol. 5239, pp. 89–103. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85502-6_6CrossRefGoogle Scholar
  36. 36.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual (web) search engine. In: Ashman, H., Thistewaite, P. (eds.) Seventh International World Wide Web Conference, vol. 30, pp. 107–117. Elsevier Science B.V, Amsterdam (1998)Google Scholar
  37. 37.
    Brusilovsky, P., Farzan, R., Ahn, J.W.: Comprehensive personalized information access in an educational digital library. In: The 5th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 9–18. ACM Press (2005)Google Scholar
  38. 38.
    Brusilovsky, P., He, D.: Introduction to social information access. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 1–18. Springer, Cham (2018)Google Scholar
  39. 39.
    Bush, V.: As we may think. The Atlantic, July 1945Google Scholar
  40. 40.
    Cai, Y., Li, Q.: Personalized search by tag-based user profile and resource profile in collaborative tagging systems. In: The 19th ACM Conference on Information and Knowledge Management (CIKM 2010), pp. 969–978. ACM (2010)Google Scholar
  41. 41.
    Carmel, D., Zwerdling, N., Guy, I., Koifman, S.O., Har’el, N., Ronen, I., Uziel, E., Yogev, S., Chernov, S.: Personalized social search based on the user’s social network. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 1227–1236. ACM (2009)Google Scholar
  42. 42.
    Carpineto, C., Romano, G.: A survey of automatic query expansion in information retrieval. ACM Comput. Surv. 44(1), 1:1–1:50 (2012)CrossRefMATHGoogle Scholar
  43. 43.
    Carriere, S.J., Kazman, R.: WebQuery: searching and visualizing the web through connectivity. In: Sixth International World Wide Web Conference, pp. 1257–1267. Elsevier (1997)CrossRefGoogle Scholar
  44. 44.
    Chakrabarti, S., Dom, B., Raghavan, P., Rajagopalan, S., Gibson, D., Kleinberg, J.: Automatic resource compilation by analyzing hyperlink structure and associated text. In: Proceedings of the Seventh International Conference on World Wide Web 7, vol. 30, pp. 65–74. Elsevier Science Publishers B.V. (1998)CrossRefGoogle Scholar
  45. 45.
    Chang, Y., Dong, A., Kolari, P., Zhang, R., Inagaki, Y., Diaz, F., Zha, H., Liu, Y.: Improving recency ranking using Twitter data. ACM Trans. Intell. Syst. Technol. 4(1), Article No. 4 (2013)CrossRefGoogle Scholar
  46. 46.
    Chapelle, O., Zhang, Y.: A dynamic Bayesian network click model for web search ranking. In: Proceedings of the 18th International Conference on World Wide Web, pp. 1–10. ACM (2009)Google Scholar
  47. 47.
    Choochaiwattana, W.: Using social annotation to improve web search. Ph.D. thesis (2008). http://d-scholarship.pitt.edu/7832/
  48. 48.
    Coyle, M., Freyne, J., Brusilovsky, P., Smyth, B.: Social information access for the rest of us: an exploration of social YouTube. In: Nejdl, W., Kay, J., Pu, P., Herder, E. (eds.) AH 2008. LNCS, vol. 5149, pp. 93–102. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-70987-9_12CrossRefGoogle Scholar
  49. 49.
    Coyle, M., Freyne, J., Farzan, R., Smyth, B., Brusilovsky, P.: Reducing click distance through social adaptive interfacing. In: ReColl 2008, International Workshop on Recommendation and Collaboration at 2008 International Conference on Intelligent User Interfaces (2008)Google Scholar
  50. 50.
    Coyle, M., Smyth, B.: SearchGuide: beyond the results page. In: De Bra, P.M.E., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 296–299. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27780-4_36CrossRefGoogle Scholar
  51. 51.
    Coyle, M., Smyth, B.: Supporting intelligent web search. ACM Trans. Internet Techn. 7(4), 20 (2007)CrossRefGoogle Scholar
  52. 52.
    Craswell, N., Billerbeck, B., Fetterly, D., Najork, M.: Robust query rewriting using anchor data. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, pp. 335–344. ACM, New York (2013)Google Scholar
  53. 53.
    Craswell, N., Hawking, D., Robertson, S.: Effective site finding using link anchor information. In: 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 250–257. ACM Press (2001)Google Scholar
  54. 54.
    Craswell, N., Szummer, M.: Random walks on the click graph. In: 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 239–246 (2007)Google Scholar
  55. 55.
    Craswell, N., Zoeter, O., Taylor, M., Ramsey, B.: An experimental comparison of click position-bias models. In: Proceedings of the 2008 International Conference on Web Search and Data Mining, pp. 87–94. ACM (2008)Google Scholar
  56. 56.
    Cui, H., Wen, J.R., Nie, J.Y., Ma, W.Y.: Probabilistic query expansion using query logs. In: Proceedings of the 11th International Conference on World Wide Web, pp. 325–332. ACM (2002)Google Scholar
  57. 57.
    Culliss, G.: Method for organizing information, 20 June 2000. http://www.google.com/patents/US6078916, US Patent 6,078,916
  58. 58.
    Culliss, G.: Method for organizing information, 11 January 11 2000. http://www.google.com/patents/US6014665
  59. 59.
    Dang, V., Croft, B.W.: Query reformulation using anchor text. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 41–50. ACM, New York (2010)Google Scholar
  60. 60.
    Dennis, S., Bruza, P., McArthur, R.: Web searching: a process-oriented experimental study of three interactive search paradigms. J. Am. Soc. Inf. Sci. Technol. 52(2), 120–133 (2002)CrossRefGoogle Scholar
  61. 61.
    Dmitriev, P., Eiron, N., Fontoura, M., Shekita, E.: Using annotations in enterprise search. In: 15th International Conference on World Wide Web, pp. 811–817. ACM (2006)Google Scholar
  62. 62.
    Dong, A., Zhang, R., Kolari, P., Bai, J., Diaz, F., Chang, Y., Zheng, Z., Zha, H.: Time is of the essence: improving recency ranking using Twitter data. In: Proceedings of the 19th International Conference on World Wide Web, pp. 331–340. ACM (2010)Google Scholar
  63. 63.
    Dou, Z., Song, R., Yuan, X., Wen, J.: Are click-through data adequate for learning web search rankings? In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 73–82. ACM (2008)Google Scholar
  64. 64.
    Dupret, G., Piwowarski, B.: A user browsing model to predict search engine click data from past observations. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 331–338. ACM (2008)Google Scholar
  65. 65.
    Eirinaki, M., Vazirgiannis, M.: Usage-based PageRank for web personalization. In: The Fifth IEEE International Conference on Data Mining, pp. 130–137 (2005)Google Scholar
  66. 66.
    Esparza, S.G., O’Mahony, M.P., Smyth, B.: On the real-time web as a source of recommendation knowledge. In: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 305–308. ACM (2010)Google Scholar
  67. 67.
    Evans, B.M., Chi, E.H.: Towards a model of understanding social search. In: 2008 ACM Conference on Computer Supported Cooperative Work, pp. 485–494. ACM (2008)Google Scholar
  68. 68.
    Evans, B.M., Chi, E.H.: An elaborated model of social search. Inf. Process. Manag. 46(6), 656–678 (2010)CrossRefGoogle Scholar
  69. 69.
    Farzan, R., Brusilovsky, P.: Social navigation support through annotation-based group modeling. In: Ardissono, L., Brna, P., Mitrovic, A. (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 463–472. Springer, Heidelberg (2005).  https://doi.org/10.1007/11527886_64CrossRefGoogle Scholar
  70. 70.
    Farzan, R., Brusilovsky, P.: Social navigation support for information seeking: if you build it, will they come? In: Houben, G.-J., McCalla, G., Pianesi, F., Zancanaro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 66–77. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02247-0_9CrossRefGoogle Scholar
  71. 71.
    Farzan, R., Brusilovsky, P.: Social navigation. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 142–180. Springer, Cham (2018)Google Scholar
  72. 72.
    Farzan, R., Coyle, M., Freyne, J., Brusilovsky, P., Smyth, B.: ASSIST: adaptive social support for information space traversal. In: 18th Conference on Hypertext and Hypermedia, pp. 199–208. ACM Press (2007)Google Scholar
  73. 73.
    Fernquist, J., Chi, E.H.: Perception and understanding of social annotations in web search. In: 22nd International World Wide Web Conference, WWW 2013, Rio de Janeiro, Brazil, pp. 403–412, 13–17 May 2013Google Scholar
  74. 74.
    Fitzpatrick, L., Dent, M.: Automatic feedback using past queries: social searching? In: Proceedings of the 20th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 306–313 (1997)Google Scholar
  75. 75.
    Fonseca, B., Golgher, P., De Moura, E., Pôssas, B., Ziviani, N.: Discovering search engine related queries using association rules. J. Web Eng. 2(4), 215–227 (2003)Google Scholar
  76. 76.
    Freyne, J., Farzan, R., Brusilovsky, P., Smyth, B., Coyle, M.: Collecting community wisdom: integrating social search and social navigation. In: International Conference on Intelligent User Interfaces, pp. 52–61. ACM Press (2007)Google Scholar
  77. 77.
    Freyne, J., Smyth, B.: An experiment in social search. In: De Bra, P.M.E., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 95–103. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27780-4_13CrossRefGoogle Scholar
  78. 78.
    Fujii, A.: Modeling anchor text and classifying queries to enhance web document retrieval. In: The 17th International Conference on World Wide Web, pp. 337–346. ACM (2008)Google Scholar
  79. 79.
    Furnas, G.W., Landauer, T.K., Gomez, L.M., Dumais, S.T.: The vocabulary problem in human-system communication. Commun. ACM 30(11), 964–971 (1987)CrossRefGoogle Scholar
  80. 80.
    Furnas, G.W.: Experience with an adaptive indexing scheme. SIGCHI Bull. 16(4), 131–135 (1985)CrossRefGoogle Scholar
  81. 81.
    Furuta, R., Shipman III, F.M., Marshall, C.C., Brenner, D., Hsieh, H.W.: Hypertext paths and the world-wide web: experience with Walden’s paths. In: Bernstein, M., Carr, L., Østerbye, K. (eds.) Eight ACM International Hypertext Conference (Hypertext 1997), pp. 167–176. ACM (1997)Google Scholar
  82. 82.
    Gao, J., Yuan, W., Li, X., Deng, K., Nie, J.: Smoothing clickthrough data for web search ranking. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 355–362. ACM (2009)Google Scholar
  83. 83.
    Gauch, S., Speretta, M., Chandramouli, A., Micarelli, A.: User profiles for personalized information access. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 54–89. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72079-9_2CrossRefGoogle Scholar
  84. 84.
    Gibson, D., Kleinberg, J., Raghavan, P.: Inferring web communities from link topology. In: Ninth ACM International Hypertext Conference, pp. 50–57. ACM Press (1998)Google Scholar
  85. 85.
    Glance, N.: Community search assistant. In: Proceedings of the 6th International Conference on Intelligent User Interfaces, pp. 91–96. ACM (2001)Google Scholar
  86. 86.
    Golder, S.A., Huberman, B.A.: Usage patterns of collaborative tagging systems. J. Inf. Sci. 32(2), 198–208 (2006)CrossRefGoogle Scholar
  87. 87.
    Graus, D., Tsagkias, M., Weerkamp, W., Meij, E., de Rijke, M.: Dynamic collective entity representations for entity ranking. In: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, pp. 595–604. ACM (2016)Google Scholar
  88. 88.
    Guan, Z., Cutrell, E.: What are you looking for?: an eye-tracking study of information usage in web search. In: ACM SIGCHI Conference on Human Factors in Computing Systems, pp. 407–416. ACM Press (2007)Google Scholar
  89. 89.
    Guo, F., Liu, C., Kannan, A., Minka, T., Taylor, M., Wang, Y., Faloutsos, C.: Click chain model in web search. In: Proceedings of the 18th International Conference on World Wide Web, pp. 11–20. ACM (2009)Google Scholar
  90. 90.
    Guo, Y.Z., Ramamohanarao, K., Park, L.A.F.: Personalized PageRank for web page prediction based on access time-length and frequency. In: Lin, T.Y., Haas, L., Kacprzyk, J., Motwani, R., Broder, A., Ho, H. (eds.) The 2007 International Conference on Web Intelligence, pp. 687–690. IEEE (2007)Google Scholar
  91. 91.
    Hammond, T., Hannay, T., Lund, B., Scott, J.: Social bookmarking tools (i): a general review. D-Lib Mag. 11(4) (2005)Google Scholar
  92. 92.
    Han, S., He, D.: Network-based social search. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 277–309. Springer, Cham (2018)Google Scholar
  93. 93.
    Han, S., He, D., Yue, Z., Brusilovsky, P.: Supporting cross-device web search with social navigation-based mobile touch interactions. In: Ricci, F., Bontcheva, K., Conlan, O., Lawless, S. (eds.) UMAP 2015. LNCS, vol. 9146, pp. 143–155. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-20267-9_12CrossRefGoogle Scholar
  94. 94.
    Harman, D.: Information retrieval. In: Relevance Feedback and Other Query Modification Techniques, pp. 241–263. Prentice-Hall, Inc. (1992)Google Scholar
  95. 95.
    Harrington, T., Shenoy, R., Najork, M., Panigrahy, R.: Social network recommended content and recommending members for personalized search results, 3 February 2015. https://www.google.com/patents/US8949232, US Patent 8,949,232
  96. 96.
    Hearst, M.A.: TileBars: visualization of term distribution information in full text information access. In: Human Factors in Computing Systems, CHI 1995 Conference Proceedings, Denver, Colorado, USA, 7–11 May 1995, pp. 59–66 (1995)Google Scholar
  97. 97.
    Heymann, P., Koutrika, G., Garcia-Molina, H.: Can social bookmarking improve web search? In: The International Conference on Web Search and Web Data Mining (WSDM 2008), pp. 195–206 (2008)Google Scholar
  98. 98.
    Hill, W.C., Hollan, J.D., Wroblewski, D., McCandless, T.: Edit wear and read wear. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3–9. ACM, New York (1992)Google Scholar
  99. 99.
    Horowitz, D., Kamvar, S.: The anatomy of a large-scale social search engine. In: The 19th International Conference on World Wide Web, pp. 431–440. ACM (2010)Google Scholar
  100. 100.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information retrieval in folksonomies: search and ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 411–426. Springer, Heidelberg (2006).  https://doi.org/10.1007/11762256_31CrossRefGoogle Scholar
  101. 101.
    Huang, C.K., Chien, L.F., Oyang, Y.J.: Relevant term suggestion in interactive web search based on contextual information in query session logs. J. Am. Soc. Inf. Sci. Technol. 54(7), 638–649 (2003)CrossRefGoogle Scholar
  102. 102.
    Huberman, B.A., Adamic, L.A.: Novelty and social search in the world wide web. CoRR cs.MA/9809025 (1998). http://arxiv.org/abs/cs.MA/9809025
  103. 103.
    Jiang, J., Yue, Z., Han, S., He, D.: Finding readings for scientists from social websites. In: 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1075–1076 (2012)Google Scholar
  104. 104.
    Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2002), pp. 133–142. ACM (2002)Google Scholar
  105. 105.
    Joachims, T., Granka, L., Pan, B., Hembrooke, H., Gay, G.: Accurately interpreting clickthrough data as implicit feedback. In: 28th Annual International ACM SIGIR Conference, pp. 154–161. ACM Press (2005)Google Scholar
  106. 106.
    Joachims, T., Radlinski, F.: Search engines that learn from implicit feedback. Computer 40(8), 34–40 (2007)CrossRefGoogle Scholar
  107. 107.
    Jung, S., Harris, K., Webster, J., Herlocker, J.L.: Serf: integrating human recommendations with search. In: Proceedings of the Thirteenth ACM International Conference on Information and Knowledge Management, pp. 571–580. ACM (2004)Google Scholar
  108. 108.
    Kahan, J., Koivunen, M.R., Prud’Hommeaux, E., Swick, R.R.: Annotea: an open RDF infrastructure for shared web annotations. Comput. Netw. 39(5), 589–608 (2002)CrossRefGoogle Scholar
  109. 109.
    Kammerer, Y., Nairn, R., Pirolli, P., Chi, E.H.: Signpost from the masses: learning effects in an exploratory social tag search browser. In: 27th International Conference on Human Factors in Computing Systems, pp. 625–634 (2009)Google Scholar
  110. 110.
    Kantor, P., Boros, E., Melamed, B., Neu, D., Menkov, V., Shi, Q., Kim, M.H.: Ant world (demonstration abstract). In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, p. 323. ACM (1999)Google Scholar
  111. 111.
    Kantor, P.B., Boros, E., Melamed, B., Meñkov, V., Shapira, B., Neu, D.J.: Capturing human intelligence in the net. Commun. ACM 43(8), 112–115 (2000)CrossRefGoogle Scholar
  112. 112.
    Katariya, S., Kveton, B., Szepesvári, C., Wen, Z.: DCM bandits: learning to rank with multiple clicks. In: Proceedings of the 33rd International Conference on International Conference on Machine Learning, vol. 48, pp. 1215–1224. JMLR.org (2016)Google Scholar
  113. 113.
    Keane, M., O’Brien, M., Smyth, B.: Are people biased in their use of search engines? Commun. ACM 51(2), 49–52 (2008)CrossRefGoogle Scholar
  114. 114.
    Kemp, C., Ramamohanarao, K.: Long-term learning for web search engines. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS, vol. 2431, pp. 263–274. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45681-3_22CrossRefGoogle Scholar
  115. 115.
    Kleinberg, J.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)MathSciNetCrossRefMATHGoogle Scholar
  116. 116.
    Kluver, D., Ekstrand, M., Konstan, J.: Rating-based collaborative filtering: algorithms and evaluation. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 344–390. Springer, Cham (2018)Google Scholar
  117. 117.
    Koolen, M., Kamps, J.: The importance of anchor text for ad hoc search revisited. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 122–129. ACM (2010)Google Scholar
  118. 118.
    Korfhage, R.R.: Information Storage and Retrieval. Wiley Computer Publishing, Hoboken (1997)Google Scholar
  119. 119.
    Kraft, R., Zien, J.: Mining anchor text for query refinement. In: Proceedings of the 13th International Conference on World Wide Web, pp. 666–674. ACM, New York (2004)Google Scholar
  120. 120.
    Kramár, T., Barla, M., Bieliková, M.: Disambiguating search by leveraging a social context based on the stream of user’s activity. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 387–392. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13470-8_37CrossRefGoogle Scholar
  121. 121.
    Kruschwitz, U., Lungley, D., Albakour, M.D., Song, D.: Deriving query suggestions for site search. J. Am. Soc. Inf. Sci. Technol. 64(10), 1975–1994 (2013)CrossRefGoogle Scholar
  122. 122.
    Kulkarni, C., Chi, E.: All the news that’s fit to read: a study of social annotations for news reading. In: 2013 ACM SIGCHI Conference on Human Factors in Computing Systems, CHI 2013, Paris, France, 27 April–2 May 2013, pp. 2407–2416 (2013)Google Scholar
  123. 123.
    Lee, C., Croft, B.: Incorporating social anchors for ad hoc retrieval. In: Proceedings of the 10th Conference on Open Research Areas in Information Retrieval, pp. 181–188 (2013)Google Scholar
  124. 124.
    Lehikoinen, J., Salminen, I., Aaltonen, A., Huuskonen, P., Kaario, J.: Meta-searches in peer-to-peer networks. Pers. Ubiquitous Comput. 10(6), 357–367 (2006)CrossRefGoogle Scholar
  125. 125.
    Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., et al.: DBpedia-a large-scale, multilingual knowledge base extracted from Wikipedia. Seman. Web 6(2), 167–195 (2015)Google Scholar
  126. 126.
    Lerman, K., Plangprasopchok, A., Wong, C.: Personalizing image search results on flickr. In: AAAI07 workshop on Intelligent Information Personalization (2007). http://arxiv.org/abs/0704.1676
  127. 127.
    Li, L., Otsuka, S., Kitsuregawa, M.: Finding related search engine queries by web community based query enrichment. World Wide Web 13(1), 121–142 (2010)CrossRefGoogle Scholar
  128. 128.
    Li, Y., Luk, W.P.R., Ho, K.S.E., Chung, F.L.K.: Improving weak ad-hoc queries using Wikipedia as external corpus. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 797–798. ACM (2007)Google Scholar
  129. 129.
    Lieberman, H.: Letizia: an agent that assists web browsing. In: The Fourteenth International Joint Conference on Artificial Intelligence, pp. 924–929 (1995)Google Scholar
  130. 130.
    Liu, Y., Gao, B., Liu, T.Y., Zhang, Y., Ma, Z., He, S., Li, H.: BrowseRank: letting web users vote for page importance. In: 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 451–458. ACM (2008)Google Scholar
  131. 131.
    Liu, Y., Liu, T.Y., Gao, B., Ma, Z., Li, H.: A framework to compute page importance based on user behaviors. Inf. Retr. 13(1), 22–45 (2010)CrossRefGoogle Scholar
  132. 132.
    Ma, H., Yang, H., King, I., Lyu, M.R.: Learning latent semantic relations from clickthrough data for query suggestion. In: Shanahan, J.G., Amer-Yahia, S., Zhang, Y., Kolcz, A., Chowdhury, A., Kelly, D. (eds.) The 17th ACM Conference on Conference on Information and Knowledge Management: CIKM 2008, pp. 709–718. ACM Press (2008)Google Scholar
  133. 133.
    Maron, M.E., Kuhns, J.L.: On relevance, probabilistic indexing and information retrieval. J. ACM 7(3), 216–244 (1960)CrossRefGoogle Scholar
  134. 134.
    Massa, P., Avesani, P.: Trust-aware recommender systems. In: 2007 ACM Conference on Recommender Systems, pp. 17–24. ACM (2007)Google Scholar
  135. 135.
    McBryan, O.A.: GENVL and WWWW: tools for taming the web. In: The 1st International World Wide Web Conference, pp. 79–90 (1994)CrossRefGoogle Scholar
  136. 136.
    McCreadie, R., Macdonald, C., Ounis, I.: News article ranking: leveraging the wisdom of bloggers. In: RIAO 2010 - 9th RIAO Conference (2010)Google Scholar
  137. 137.
    McDonnell, M., Shiri, A.: Social search: a taxonomy of, and a user-centred approach to, social web search. Program 45(1), 6–28 (2011)CrossRefGoogle Scholar
  138. 138.
    McNally, K., O’Mahony, M.P., Smyth, B.: A comparative study of collaboration-based reputation models for social recommender systems. User Model. User-Adapt. Interact. 24(3), 219–260 (2014)CrossRefGoogle Scholar
  139. 139.
    Micarelli, A., Gasparetti, F., Sciarrone, F., Gauch, S.: Personalized search on the world wide web. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 195–230. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72079-9_6CrossRefGoogle Scholar
  140. 140.
    Millen, D., Whittaker, S., Yang, M., Feinberg, J.: Supporting social search with social bookmarking. In: The HCIC 2007 Winter Workshop (2007). http://www.hcic.org/hcic2007/papers.phtml
  141. 141.
    Millen, D.R., Feinberg, J., Kerr, B.: Dogear: social bookmarking in the enterprise. In: SIGCHI Conference on Human Factors in Computing Systems, CHI 2006, pp. 111–120 (2006)Google Scholar
  142. 142.
    Millen, D.R., Yang, M., Whittaker, S., Feinberg, J.: Social bookmarking and exploratory search. In: Bannon, L.J., Wagner, I., Gutwin, C., Harper, R.H.R., Schmidt, K. (eds.) ECSCW 2007. Springer, London (2007).  https://doi.org/10.1007/978-1-84800-031-5_2CrossRefGoogle Scholar
  143. 143.
    Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  144. 144.
    Mishne, G., Lin, J.: Twanchor text: a preliminary study of the value of tweets as anchor text. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1159–1160. ACM (2012)Google Scholar
  145. 145.
    Muhammad, K., Lawlor, A., Rafter, R., Smyth, B.: Great explanations: opinionated explanations for recommendations. In: Hüllermeier, E., Minor, M. (eds.) ICCBR 2015. LNCS (LNAI), vol. 9343, pp. 244–258. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24586-7_17CrossRefGoogle Scholar
  146. 146.
    Muhammad, K.I., Lawlor, A., Smyth, B.: A live-user study of opinionated explanations for recommender systems. In: Proceedings of the 21st International Conference on Intelligent User Interfaces, IUI 2016, Sonoma, CA, USA, 07–10 March 2016, pp. 256–260 (2016)Google Scholar
  147. 147.
    Muller, M., Millen, D., Feinberg, J.: Information curators in an enterprise file sharing system. In: 11th European Conference on Computer Supported Cooperative Work, ECSCW 2009 (2009)CrossRefGoogle Scholar
  148. 148.
    Muralidharan, A., Gyongyi, Z., Chi, E.: Social annotations in web search. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1085–1094. ACM (2012)Google Scholar
  149. 149.
    Navarro Bullock, B., Hotho, A., Stumme, G.: Accessing information with tags: search and ranking. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 310–343. Springer, Cham (2018)Google Scholar
  150. 150.
    Noll, M.G., Meinel, C.: Web search personalization via social bookmarking and tagging. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 367–380. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76298-0_27CrossRefGoogle Scholar
  151. 151.
    Noll, M., Meinel, C.: The metadata triumvirate: social annotations, anchor texts and search queries. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2008, vol. 1, pp. 640–647. IEEE (2008)Google Scholar
  152. 152.
    O’Donovan, J., Smyth, B.: Trust in recommender systems. In: IUI 2005: Proceedings of the 10th International Conference on Intelligent User Interfaces, pp. 167–174. ACM Press (2005)Google Scholar
  153. 153.
    Ogilvie, P., Callan, J.: Combining document representations for known-item search. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 143–150. ACM (2003)Google Scholar
  154. 154.
    Oh, S.: Social Q&A. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 75–107. Springer, Cham (2018)Google Scholar
  155. 155.
    Pantel, P., Gamon, M., Alonso, O., Haas, K.: Social annotations: utility and prediction modeling. In: The 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, Portland, OR, USA, 12–16 August 2012, pp. 285–294 (2012)Google Scholar
  156. 156.
    Parikh, N., Sundaresan, N.: Inferring semantic query relations from collective user behavior. In: Shanahan, J.G., Amer-Yahia, S., Zhang, Y., Kolcz, A., Chowdhury, A., Kelly, D. (eds.) The 17th ACM Conference on Conference on Information and Knowledge Management: CIKM 2008, pp. 349–358. ACM Press (2008)Google Scholar
  157. 157.
    Phelan, O., Mccarthy, K., Smyth, B.: Yokie - a curated, real-time search and discovery system using Twitter. In: RSWEB 2011: 3rd Workshop on Recommender Systems and the Social Web at RecSys 2011 (2011)Google Scholar
  158. 158.
    Piwowarski, B., Dupret, G., Jones, R.: Mining user web search activity with layered Bayesian networks or how to capture a click in its context. In: Proceedings of the Second ACM International Conference on Web Search and Data Mining, pp. 162–171. ACM (2009)Google Scholar
  159. 159.
    Poblete, B., Baeza-Yates, R.: Query-sets: using implicit feedback and query patterns to organize web documents. In: The 17th International Conference on World Wide Web, pp. 41–50. ACM (2008)Google Scholar
  160. 160.
    Poblete, B., Castillo, C., Gionis, A.: Dr. Searcher and Mr. Browser: a unified hyperlink-click graph. In: Shanahan, J.G., Amer-Yahia, S., Zhang, Y., Kolcz, A., Chowdhury, A., Kelly, D. (eds.) The 17th ACM Conference on Conference on Information and Knowledge Management: CIKM 2008, pp. 1123–1132. ACM Press (2008)Google Scholar
  161. 161.
    Porter, M.F.: Implementing a probabilistic information retrieval system. Inf. Technol.: Res. Dev. 1(2), 131–156 (1982)Google Scholar
  162. 162.
    Radlinski, F., Joachims, T.: Query chains: learning to rank from implicit feedback. In: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 239–248. ACM (2005)Google Scholar
  163. 163.
    Raghavan, V.V., Sever, H.: On the reuse of past optimal queries. In: 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 344–350. ACM (1995)Google Scholar
  164. 164.
    Ramage, D., Heymann, P., Manning, C., Garcia-Molina, H.: Clustering the tagged web. In: Proceedings of the Second ACM International Conference on Web Search and Data Mining, pp. 54–63 (2009)Google Scholar
  165. 165.
    Remde, J.R., Gomez, L.M., Landauer, T.K.: SuperBook: an automatic tool for information exploration—hypertext? In: The ACM Conference on Hypertext, Hypertext 1987, pp. 175–188 (1987)Google Scholar
  166. 166.
    Ritchie, A., Robertson, S., Teufel, S.: Comparing citation contexts for information retrieval. In: Shanahan, J.G., Amer-Yahia, S., Zhang, Y., Kolcz, A., Chowdhury, A., Kelly, D. (eds.) The 17th ACM Conference on Information and Knowledge Management: CIKM 2008, pp. 213–222. ACM Press (2008)Google Scholar
  167. 167.
    Rocchio, J.J.: Relevance feedback in information retrieval (Chap. 14). In: Salton, G. (ed.) The SMART Retrieval System: Experiments in Automatic Document Processing. Prentice-Hall Series in Automatic Computation, pp. 313–323. Prentice-Hall, Englewood Cliffs (1971)Google Scholar
  168. 168.
    Rowlands, T., Hawking, D., Sankaranarayana, R.: New-web search with microblog annotations. In: Proceedings of the 19th International Conference on World Wide Web, pp. 1293–1296. ACM (2010)Google Scholar
  169. 169.
    Salton, G.: The SMART Retrieval System: Experiments in Automatic Document Processing. Prentice-Hall, Englewood Cliffs (1971)Google Scholar
  170. 170.
    Scholer, F., Williams, H.E.: Query association for effective retrieval. In: ACM 11th Conference on Information and Knowledge Management, CIKM 2002, pp. 324–331 (2002)Google Scholar
  171. 171.
    Scholer, F., Williams, H., Turpin, A.: Query association surrogates for web search. J. Am. Soc. Inf. Sci. 55(7), 637–650 (2004)CrossRefGoogle Scholar
  172. 172.
    di Sciascio, C., Brusilovsky, P., Veas, E.: A study on user-controllable social exploratory search. In: 23rd International Conference on Intelligent User Interfaces. ACM (2018)Google Scholar
  173. 173.
    Shami, N.S., Muller, M., Millen, D.: Social search and metadata in predicting file discovery. In: Fifth International AAAI Conference on Weblogs and Social Media, pp. 337–344. AAAI Publications (2011)Google Scholar
  174. 174.
    Shapira, B., Kantor, P.B., Melamed, B.: The effect of extrinsic motivation on user behavior in a collaborative information finding system. J. Am. Soc. Inf. Sci. Technol. 52(11), 879–887 (2001)CrossRefGoogle Scholar
  175. 175.
    Shapira, B., Taieb-Maimon, M., Moskowitz, A.: Study of the usefulness of known and new implicit indicators and their optimal combination for accurate inference of users interests. In: Proceedings of the 2006 ACM Symposium on Applied Computing, pp. 1118–1119. ACM (2006)Google Scholar
  176. 176.
    Shapira, B., Zabar, B.: Personalized search: Integrating collaboration and social networks. J. Am. Soc. Inf. Sci. Technol. 62(1), 146–160 (2011)CrossRefGoogle Scholar
  177. 177.
    Shipman, F.M., Marshall, C.C.: Spatial hypertext: an alternative to navigational and semantic links. ACM Comput. Surv. 31(4es), Article No. 14 (1999)CrossRefGoogle Scholar
  178. 178.
    Smyth, B., Balfe, E., Boydell, O., Bradley, K., Briggs, P., Coyle, M., Freyne, J.: A live-user evaluation of collaborative web search. In: IJCAI-2005, Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK, 30 July–5 August 2005, pp. 1419–1424 (2005)Google Scholar
  179. 179.
    Smyth, B., Balfe, E., Briggs, P., Coyle, M., Freyne, J.: Collaborative web search. In: IJCAI-2003, Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, Acapulco, Mexico, 9–15 August 2003, pp. 1417–1419 (2003)Google Scholar
  180. 180.
    Smyth, B., Balfe, E., Freyne, J., Briggs, P., Coyle, M., Boydell, O.: Exploiting query repetition and regularity in an adaptive community-based web search engine. User Model. User-Adapt. Interact. 14(5), 383–423 (2004)CrossRefGoogle Scholar
  181. 181.
    Smyth, B., Briggs, P., Coyle, M., O’Mahony, M.: Google shared. A case-study in social search. In: Houben, G.-J., McCalla, G., Pianesi, F., Zancanaro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 283–294. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02247-0_27CrossRefGoogle Scholar
  182. 182.
    Smyth, B., Coyle, M., Briggs, P.: Heystaks: a real-world deployment of social search. In: Sixth ACM Conference on Recommender Systems, Dublin, Ireland, 9–13 September 2012, pp. 289–292 (2012)Google Scholar
  183. 183.
    Smyth, B., Coyle, M., Briggs, P., McNally, K., O’Mahony, M.P.: Collaboration, reputation and recommender systems in social web search. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 569–608. Springer, Boston (2015).  https://doi.org/10.1007/978-1-4899-7637-6_17CrossRefGoogle Scholar
  184. 184.
    Song, Y., Zhou, D., He, L.: Query suggestion by constructing term-transition graphs. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, pp. 353–362. ACM (2012)Google Scholar
  185. 185.
    Spink, A.: Web search: emerging patterns. Libr. Trends 52(2), 299–306 (2003)Google Scholar
  186. 186.
    Spink, A., Bateman, J., Jansen, B.J.: Users’ searching behavior on the excite web search engine. In: Proceedings of WebNet 1998 - World Conference on the WWW and Internet, Orlando, Florida, USA, 7–12 November 1998Google Scholar
  187. 187.
    Spink, A., Jansen, B.J., Wolfram, D., Saracevic, T.: From e-sex to e-commerce: web search changes. IEEE Comput. 35(3), 107–109 (2002)CrossRefGoogle Scholar
  188. 188.
    Sun, J., Zhong, N., Yu, X.: Collaborative web search utilizing experts’ experiences. In: 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, pp. 120–127 (2010)Google Scholar
  189. 189.
    Teevan, J., Morris, M., Bush, S.: Discovering and using groups to improve personalized search. In: Proceedings of the Second ACM International Conference on Web Search and Data Mining, pp. 15–24. ACM (2009)Google Scholar
  190. 190.
    Trevisiol, M., Chiarandini, L., Aiello, L.M., Jaimes, A.: Image ranking based on user browsing behavior. In: 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 445–454. ACM (2012)Google Scholar
  191. 191.
    Uherčík, T., Šimko, M., Bieliková, M.: Utilizing microblogs for web page relevant term acquisition. In: van Emde Boas, P., Groen, F., Italiano, G., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013: Theory and Practice of Computer Science. LNCS, vol. 7741, pp. 457–468. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  192. 192.
    Vahabi, H., Ackerman, M., Loker, D., Baeza-Yates, R., Ortiz, A.: Orthogonal query recommendation. In: Proceedings of the 7th ACM Conference on Recommender Systems, pp. 33–40. ACM (2013)Google Scholar
  193. 193.
    Wang, C., Liu, Y., Wang, M., Zhou, K., Nie, J.Y., Ma, S.: Incorporating non-sequential behavior into click models. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 283–292. ACM (2015)Google Scholar
  194. 194.
    Wang, X., Bendersky, M., Metzler, D., Najork, M.: Learning to rank with selection bias in personal search. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 115–124. ACM (2016)Google Scholar
  195. 195.
    Wang, X., Tan, B., Shakery, A., Zhai, C.: Beyond hyperlinks: organizing information footprints in search logs to support effective browsing. In: ACM International Conference on Information and Knowledge Management 2009 (CIKM 2009), pp. 1237–1246 (2009)Google Scholar
  196. 196.
    Wang, X., Zhai, C.: Mining term association patterns from search logs for effective query reformulation. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, pp. 479–488. ACM (2008)Google Scholar
  197. 197.
    Wen, J.R., Nie, J.Y., Zhang, H.J.: Query clustering using user logs. ACM Trans. Inf. Syst. 20(1), 59–81 (2002)CrossRefGoogle Scholar
  198. 198.
    Westerveld, T., Kraaij, W., Hiemstra, D.: Retrieving web pages using content, links, URLs and anchors. In: Tenth Text REtrieval Conference, TREC 2001, pp. 663–672 (2002)Google Scholar
  199. 199.
    Wexelblat, A., Maes, P.: Footprints: history-rich tools for information foraging. In: Proceeding of the CHI 1999 Conference on Human Factors in Computing Systems: The CHI is the Limit, Pittsburgh, PA, USA, 15–20 May 1999, pp. 270–277 (1999)Google Scholar
  200. 200.
    White, R., Bilenko, M., Cucerzan, S.: Leveraging popular destinations to enhance web search interaction. ACM Trans. Web 2(3), 1–30 (2008)CrossRefGoogle Scholar
  201. 201.
    White, R.W., Bilenko, M., Cucerzan, S.: Studying the use of popular destinations to enhance web search interaction. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Amsterdam, The Netherlands, 23–27 July 2007, pp. 159–166 (2007)Google Scholar
  202. 202.
    Wikipedia: Direct Hit Technologies, September 2015. https://en.wikipedia.org/wiki/Direct_Hit_Technologies
  203. 203.
    Wikipedia: Social search, November 2016. https://en.wikipedia.org/wiki/Social_search
  204. 204.
    Wolfram, D., Spink, A., Jansen, B.J., Saracevic, T.: Vox populi: the public searching of the web. JASIST 52(12), 1073–1074 (2001)CrossRefGoogle Scholar
  205. 205.
    Wu, M., Hawking, D., Turpin, A., Scholer, F.: Using anchor text for homepage and topic distillation search tasks. J. Assoc. Inf. Sci. Technol. 63(6), 1235–1255 (2012)CrossRefGoogle Scholar
  206. 206.
    Wu, X., Zhang, L., Yu, Y.: Exploring social annotations for the semantic web. In: 15th International Conference on World Wide Web, pp. 417–426. ACM Press (2006)Google Scholar
  207. 207.
    Xiong, C., Callan, J.: Query expansion with freebase. In: Proceedings of the 2015 International Conference on the Theory of Information Retrieval, pp. 111–120. ACM (2015)Google Scholar
  208. 208.
    Xu, S., Bao, S., Fei, B., Su, Z., Yu, Y.: Exploring folksonomy for personalized search. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 155–162. ACM (2008)Google Scholar
  209. 209.
    Xue, G., Zeng, H., Chen, Z., Yu, Y., Ma, W., Xi, W., Fan, W.: Optimizing web search using web click-through data. In: Proceedings of the Thirteenth ACM International Conference on Information and Knowledge Management, pp. 118–126. ACM (2004)Google Scholar
  210. 210.
    Xue, G.R., Zeng, H.J., Chen, Z., Ma, W.Y., Zhang, H.J., Lu, C.J.: Implicit link analysis for small web search. In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informtaion Retrieval, pp. 56–63. ACM (2003)Google Scholar
  211. 211.
    Yanbe, Y., Jatowt, A., Nakamura, S., Tanaka, K.: Can social bookmarking enhance search in the web? In: JCDL 2007: 2007 Conference on Digital Libraries, pp. 107–116. ACM Press (2007)Google Scholar
  212. 212.
    Zanardi, V., Capra, L.: Social ranking: uncovering relevant content using tag-based recommender systems. In: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 51–58. ACM (2008)Google Scholar
  213. 213.
    Zhang, J., Deng, B., Li, X.: Concept based query expansion using WordNet. In: Proceedings of the 2009 International e-Conference on Advanced Science and Technology, pp. 52–55. IEEE (2009)Google Scholar
  214. 214.
    Zhou, D., Bian, J., Zheng, S., Zha, H., Giles, C.L.: Exploring social annotations for information retrieval. In: The 17th International Conference on World Wide Web, pp. 715–724. ACM (2008)Google Scholar
  215. 215.
    Zhou, J., Ding, C., Androutsos, D.: Improving web site search using web server logs. In: CASCON 2006: Proceedings of the 2006 Conference of the Center for Advanced Studies on Collaborative Research. ACM (2006)Google Scholar
  216. 216.
    Zhu, G., Mishne, G.: ClickRank: learning session-context models to enrich web search ranking. ACM Trans. Web 6(1), 1:1–1:22 (2012)CrossRefGoogle Scholar
  217. 217.
    Zhu, J., Hong, J., Hughes, J.: PageRate: counting web users’ votes. In: Proceedings of the Twelfth ACM Conference on Hypertext and Hypermedia, pp. 131–132. ACM (2001)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Computing and InformationUniversity of PittsburghPittsburghUSA
  2. 2.Insight Centre for Data Analytics School of Computer ScienceUniversity College DublinDublinIreland
  3. 3.Department of software and Information Systems EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations