Advertisement

Tag-Based Navigation and Visualization

  • Dimitar Dimitrov
  • Denis Helic
  • Markus Strohmaier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10100)

Abstract

Allowing users to organize content by tagging resources in webbased systems has led to the emergence of the so-called SocialWeb. Tags turned out to be helpful not only for giving recommendations and improving search in social tagging systems but also for enhancing information access by navigating. In this chapter, we will cover much of the pioneer research work that has studied tag-based navigation and visualization. After giving a short overview of the social tagging process and its specifics, we provide an extensive description of the typical user interfaces and visualization techniques characteristic for social tagging systems. As the efficiency of tag-based navigation depends on structuring tagging data, we also provide a review of the state of the art algorithms for tag clustering. Before we conclude, we demonstrate how tag-based navigation can be modeled and discuss the intrinsic navigability of social tagging systems from various theoretic perspectives.

References

  1. 1.
    Adamic, L.A., Lukose, R.M., Puniyani, A.R., Huberman, B.A.: Search in power-law networks. Phys. Rev. E 64(4), 046135 (2001)CrossRefGoogle Scholar
  2. 2.
    Aouiche, K., Lemire, D., Godin, R.: Web 2.0 OLAP: from data cubes to tag clouds. CoRR abs/0905.2657 (2009). http://arxiv.org/abs/0905.2657Google Scholar
  3. 3.
    Au Yeung, C., Gibbins, N., Shadbolt, N.: Contextualising tags in collaborative tagging systems. In: Proceedings of the 20th ACM Conference on Hypertext and Hypermedia, HT 2009, pp. 251–260. ACM, New York (2009)Google Scholar
  4. 4.
    Bateman, S., Gutwin, C., Nacenta, M.: Seeing things in the clouds: the effect of visual features on tag cloud selections. In: Proceedings of the Nineteenth ACM Conference on Hypertext and Hypermedia, HT 2008, pp. 193–202. ACM, New York (2008)Google Scholar
  5. 5.
    Begelman, G., Keller, P., Smadja, F.: Automated tag clustering: improving search and exploration in the tag space. In: Collaborative web tagging workshop at WWW 2006, vol. 50, Edinburgh, Scotland (2006)Google Scholar
  6. 6.
    Benz, D., Hotho, A., Stumme, G., Sttzer, S.: Semantics made by you and me: self-emerging ontologies can capture the diversity of shared knowledge. In: Proceedings of the 2nd Web Science Conference, WebSci 2010 (2010)Google Scholar
  7. 7.
    Bielenberg, K., Zacher, M.: Groups in social software: utilizing tagging to integrate individual contexts for social navigation (2006)Google Scholar
  8. 8.
    Bogers, T.: Tag-based recommendation. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 441–479. Springer, Cham (2018)Google Scholar
  9. 9.
    Borges, J., Levene, M.: Evaluating variable-length markov chain models for analysis of user web navigation sessions. IEEE Trans. Knowl. Data Eng. 19(4), 441–452 (2007)CrossRefGoogle Scholar
  10. 10.
    Bridle, J.S.: Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. In: Soulié, F.F., Hérault, J. (eds.) Neurocomputing, vol. 68, pp. 227–236. Springer, Heidelberg (1990).  https://doi.org/10.1007/978-3-642-76153-9_28CrossRefGoogle Scholar
  11. 11.
    Brooks, C.H., Montanez, N.: Improved annotation of the blogosphere via autotagging and hierarchical clustering. In: Proceedings of the 15th International Conference on World Wide Web, WWW 2006, pp. 625–632. ACM, New York (2006)Google Scholar
  12. 12.
    Candan, K.S., Di Caro, L., Sapino, M.L.: Creating tag hierarchies for effective navigation in social media. In: Proceedings of the 2008 ACM Workshop on Search in Social Media, SSM 2008, pp. 75–82. ACM, New York (2008)Google Scholar
  13. 13.
    Cattuto, C., Schmitz, C., Baldassarri, A., Servedio, V.D., Loreto, V., Hotho, A., Grahl, M., Stumme, G.: Network properties of folksonomies. AI Commun. 20(4), 245–262 (2007)MathSciNetGoogle Scholar
  14. 14.
    Chi, E.H., Mytkowicz, T.: Understanding navigability of social tagging systems. In: Proceedings of CHI, vol. 7 (2007)Google Scholar
  15. 15.
    Chi, E.H., Mytkowicz, T.: Understanding the efficiency of social tagging systems using information theory. In: Proceedings of the Nineteenth ACM Conference on Hypertext and Hypermedia, HT 2008, pp. 81–88. ACM, New York (2008)Google Scholar
  16. 16.
    Clauset, A., Moore, C., Newman, M.E.: Hierarchical structure and the prediction of missing links in networks. Nature 453(7191), 98–101 (2008)CrossRefGoogle Scholar
  17. 17.
    Collins, C., Viegas, F.B., Wattenberg, M.: Parallel tag clouds to explore and analyze faceted text corpora. In: IEEE Symposium on Visual Analytics Science and Technology, VAST 2009, pp. 91–98. IEEE (2009)Google Scholar
  18. 18.
    Daw, N.D., O’Doherty, J.P., Dayan, P., Seymour, B., Dolan, R.J.: Cortical substrates for exploratory decisions in humans. Nature 441(7095), 876–879 (2006)CrossRefGoogle Scholar
  19. 19.
    Deshpande, M., Karypis, G.: Selective markov models for predicting web page accesses. ACM Trans. Internet Technol. (TOIT) 4(2), 163–184 (2004)CrossRefGoogle Scholar
  20. 20.
    Dhillon, I.S., Fan, J., Guan, Y.: Efficient clustering of very large document collections. In: Grossman, R.L., Kamath, C., Kegelmeyer, P., Kumar, V., Namburu, R.R. (eds.) Data Mining for Scientific and Engineering Applications. MC, vol. 2, pp. 357–381. Springer, Boston, MA (2001).  https://doi.org/10.1007/978-1-4615-1733-7_20CrossRefGoogle Scholar
  21. 21.
    Di Caro, L., Candan, K.S., Sapino, M.L.: Using tagflake for condensing navigable tag hierarchies from tag clouds. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2008, pp. 1069–1072. ACM, New York (2008)Google Scholar
  22. 22.
    Dubinko, M., Kumar, R., Magnani, J., Novak, J., Raghavan, P., Tomkins, A.: Visualizing tags over time. ACM Trans. Web 1(2), 7 (2007)CrossRefGoogle Scholar
  23. 23.
    Eda, T., Uchiyama, T., Uchiyama, T., Yoshikawa, M.: Signaling emotion in tagclouds. In: Proceedings of the 18th International Conference on World Wide Web, WWW 2009, pp. 1199–1200. ACM, New York (2009)Google Scholar
  24. 24.
    Fairthorne, R.A.: Content analysis, specification and control. Annu. Rev. Inf. Sci. Technol. 4, 73–109 (1969)Google Scholar
  25. 25.
    Forgy, E.W.: Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics 21, 768–769 (1965)Google Scholar
  26. 26.
    Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Fu, W.T., Pirolli, P.: SNIF-ACT: a cognitive model of user navigation on the world wide web. Hum.-Comput. Interact. 22(4), 355–412 (2007)Google Scholar
  28. 28.
    Furnas, G.W., Fake, C., von Ahn, L., Schachter, J., Golder, S., Fox, K., Davis, M., Marlow, C., Naaman, M.: Why do tagging systems work? In: CHI 2006 Extended Abstracts on Human Factors in Computing Systems, CHI EA 2006, pp. 36–39. ACM, New York (2006)Google Scholar
  29. 29.
    Furnas, G.W., Landauer, T.K., Gomez, L.M., Dumais, S.T.: The vocabulary problem in human-system communication. Commun. ACM 30(11), 964–971 (1987)CrossRefGoogle Scholar
  30. 30.
    Gambette, P., Véronis, J.: Visualising a text with a tree cloud. In: Locarek-Junge, H., Weihs, C. (eds.) International Federation of Classification Societies Conference, IFCS 2009, pp. 561–569. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10745-0_61CrossRefGoogle Scholar
  31. 31.
    Golder, S.A., Huberman, B.A.: Usage patterns of collaborative tagging systems. J. Inf. Sci. 32(2), 198–208 (2006)CrossRefGoogle Scholar
  32. 32.
    Halvey, M.J., Keane, M.T.: An assessment of tag presentation techniques. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, pp. 1313–1314. ACM, New York (2007)Google Scholar
  33. 33.
    Hassan-Montero, Y., Herrero-Solana, V.: Improving tag-clouds as visual information retrieval interfaces. In: International Conference on Multidisciplinary Information Sciences and Technologies, InSciT 2006 (2006)Google Scholar
  34. 34.
    Hearst, M.: Search User Interfaces. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  35. 35.
    Helic, D., Körner, C., Granitzer, M., Strohmaier, M., Trattner, C.: Navigational efficiency of broad vs. narrow folksonomies. In: Proceedings of the 23rd ACM Conference on Hypertext and Social Media, HT 2012, pp. 63–72. ACM, New York (2012)Google Scholar
  36. 36.
    Helic, D., Strohmaier, M.: Building directories for social tagging systems. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM 2011, pp. 525–534. ACM, New York (2011)Google Scholar
  37. 37.
    Helic, D., Strohmaier, M., Granitzer, M., Scherer, R.: Models of human navigation in information networks based on decentralized search. In: Proceedings of the 24th ACM Conference on Hypertext and Social Media, HT 2013, pp. 89–98. ACM, New York (2013).  https://doi.org/10.1145/2481492.2481502
  38. 38.
    Helic, D., Strohmaier, M., Trattner, C., Muhr, M., Lerman, K.: Pragmatic evaluation of folksonomies. In: Proceedings of the 20th International Conference on World Wide Web, WWW 2011, pp. 417–426. ACM, New York (2011)Google Scholar
  39. 39.
    Helic, D., Trattner, C., Strohmaier, M., Andrews, K.: On the navigability of social tagging systems. In: 2010 IEEE Second International Conference on Social Computing (SocialCom), pp. 161–168. IEEE (2010)Google Scholar
  40. 40.
    Helic, D., Trattner, C., Strohmaier, M., Andrews, K.: Are tag clouds useful for navigation? A network-theoretic analysis. Int. J. Soc. Comput. Cyber-Phys. Syst. 1(1), 33–55 (2011)CrossRefGoogle Scholar
  41. 41.
    Heymann, P., Garcia-Molina, H.: Collaborative creation of communal hierarchical taxonomies in social tagging systems. Technical report 2006–2010, Stanford University, April 2006Google Scholar
  42. 42.
    Heymann, P., Paepcke, A., Garcia-Molina, H.: Tagging human knowledge. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, WSDM 2010, pp. 51–60. ACM, New York (2010)Google Scholar
  43. 43.
    Hong, L., Chi, E.H., Budiu, R., Pirolli, P., Nelson, L.: SparTag.us: a low cost tagging system for foraging of web content. In: Proceedings of the Working Conference on Advanced Visual Interfaces, AVI 2008, pp. 65–72. ACM, New York (2008)Google Scholar
  44. 44.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Information retrieval in folksonomies: search and ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 411–426. Springer, Heidelberg (2006).  https://doi.org/10.1007/11762256_31CrossRefGoogle Scholar
  45. 45.
    Inselberg, A.: The plane with parallel coordinates. Vis. Comput. 1(2), 69–91 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Jaffe, A., Naaman, M., Tassa, T., Davis, M.: Generating summaries and visualization for large collections of geo-referenced photographs. In: Proceedings of the 8th ACM International Workshop on Multimedia Information Retrieval, MIR 2006, pp. 89–98. ACM, New York (2006)Google Scholar
  47. 47.
    Kammerer, Y., Nairn, R., Pirolli, P., Chi, E.H.: Signpost from the masses: learning effects in an exploratory social tag search browser. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2009, pp. 625–634. ACM, New York (2009)Google Scholar
  48. 48.
    Kaser, O., Lemire, D.: Tag-cloud drawing: algorithms for cloud visualization. arXiv preprint arXiv:0703109 (2007)
  49. 49.
    Kleinberg, J.: Navigation in a small world. Nature 406(6798), 845 (2000)CrossRefGoogle Scholar
  50. 50.
    Kleinberg, J.: The small-world phenomenon: an algorithmic perspective. In: Proceedings of the Thirty-second Annual ACM Symposium on Theory of Computing, pp. 163–170. ACM (2000)Google Scholar
  51. 51.
    Kleinberg, J.: Small-world phenomena and the dynamics of information. Adv. Neural Inf. Process. syst. 1, 431–438 (2002)Google Scholar
  52. 52.
    Körner, C., Benz, D., Hotho, A., Strohmaier, M., Stumme, G.: Stop thinking, start tagging: tag semantics emerge from collaborative verbosity. In: Proceedings of the 19th International Conference on World Wide Web, WWW 2010, pp. 521–530. ACM, New York (2010)Google Scholar
  53. 53.
    Kuo, B.Y.L., Hentrich, T., Good, B.M., Wilkinson, M.D.: Tag clouds for summarizing web search results. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, pp. 1203–1204. ACM, New York (2007)Google Scholar
  54. 54.
    Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure in complex networks. New J. Phys. 11(3), 033015 (2009)CrossRefGoogle Scholar
  55. 55.
    Lee, B., Riche, N.H., Karlson, A.K., Carpendale, S.: Sparkclouds: visualizing trends in tag clouds. IEEE Trans. Vis. Comput. Graph. 16(6), 1182–1189 (2010)CrossRefGoogle Scholar
  56. 56.
    Li, R., Bao, S., Yu, Y., Fei, B., Su, Z.: Towards effective browsing of large scale social annotations. In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007, pp. 943–952. ACM, New York (2007)Google Scholar
  57. 57.
    Li, Z., Tian, J.: Testing the suitability of Markov chains as web usage models. In: Proceedings 27th Annual International Computer Software and Applications Conference, COMPSAC 2003, pp. 356–361. IEEE (2003)Google Scholar
  58. 58.
    Lin, Y.L., Brusilovsky, P., He, D.: Finding cultural heritage images through a dual-perspective navigation framework. Inf. Process. Manag. 52(5), 820–839 (2016)CrossRefGoogle Scholar
  59. 59.
    Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Lohmann, S., Ziegler, J., Tetzlaff, L.: Comparison of tag cloud layouts: task-related performance and visual exploration. In: Gross, T., Gulliksen, J., Kotzé, P., Oestreicher, L., Palanque, P., Prates, R.O., Winckler, M. (eds.) INTERACT 2009. LNCS, vol. 5726, pp. 392–404. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03655-2_43CrossRefGoogle Scholar
  61. 61.
    Macgregor, G., McCulloch, E.: Collaborative tagging as a knowledge organisation and resource discovery tool. Libr. Rev. 55(5), 291–300 (2006)CrossRefGoogle Scholar
  62. 62.
    Mathes, A.: Folksonomies-cooperative classification and communication through shared metadata (2004). http://www.adammathes.com/academic/computer-mediated-communication/folksonomies.html
  63. 63.
    Miao, G., Tao, S., Cheng, W., Moulic, R., Moser, L.E., Lo, D., Yan, X.: Understanding task-driven information flow in collaborative networks. In: Proceedings of the 21st International Conference on World Wide Web, WWW 2012, pp. 849–858. ACM, New York (2012)Google Scholar
  64. 64.
    Mika, P.: Ontologies are us: a unified model of social networks and semantics. Web Semant. Sci. Serv. Agents World Wide Web 5(1), 5–15 (2007)CrossRefGoogle Scholar
  65. 65.
    Millen, D.R., Feinberg, J.: Using social tagging to improve social navigation. In: Workshop on the Social Navigation and Community based Adaptation Technologies (2006)Google Scholar
  66. 66.
    Muchnik, L., Itzhack, R., Solomon, S., Louzoun, Y.: Self-emergence of knowledge trees: extraction of the Wikipedia hierarchies. Phys. Rev. E 76(1), 016106 (2007)CrossRefGoogle Scholar
  67. 67.
    Navarro Bullock, B., Hotho, A., Stumme, G.: Accessing information with tags: search and ranking. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 310–343. Springer, Cham (2018)Google Scholar
  68. 68.
    Pirolli, P.: An elementary social information foraging model. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2009, pp. 605–614. ACM, New York (2009)Google Scholar
  69. 69.
    Pirolli, P., Card, S.: Information foraging. Psychol. Rev. 106(4), 643 (1999)CrossRefGoogle Scholar
  70. 70.
    Pirolli, P., Fu, W.-T.: SNIF-ACT: a model of information foraging on the world wide web. In: Brusilovsky, P., Corbett, A., de Rosis, F. (eds.) UM 2003. LNCS (LNAI), vol. 2702, pp. 45–54. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-44963-9_8CrossRefGoogle Scholar
  71. 71.
    Plangprasopchok, A., Lerman, K., Getoor, L.: From saplings to a tree: integrating structured metadata via relational affinity propagation. In: Proceedings of the AAAI Workshop on Statistical Relational AI, July 2010Google Scholar
  72. 72.
    Ramage, D., Heymann, P., Manning, C.D., Garcia-Molina, H.: Clustering the tagged web. In: Proceedings of the Second ACM International Conference on Web Search and Data Mining, WSDM 2009, pp. 54–63. ACM, New York (2009)Google Scholar
  73. 73.
    Rivadeneira, A.W., Gruen, D.M., Muller, M.J., Millen, D.R.: Getting our head in the clouds: toward evaluation studies of tagclouds. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2007, pp. 995–998. ACM, New York (2007)Google Scholar
  74. 74.
    Russell, T.: Cloudalicious: Folksonomy over time. In: Proceedings of the 6th ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL 2006, p. 364. ACM, New York (2006)Google Scholar
  75. 75.
    Schmitz, C., Hotho, A., Jäschke, R., Stumme, G.: Mining association rules in folksonomies. In: Batagelj, V., Bock, H.H., Ferligoj, A., Ẑiberna, A. (eds.) Data Science and Classification, pp. 261–270. Springer, Heidelberg (2006).  https://doi.org/10.1007/3-540-34416-0_28CrossRefGoogle Scholar
  76. 76.
    Schmitz, P.: Inducing ontology from flickr tags. In: Collaborative Web Tagging Workshop at WWW 2006, vol. 50, Edinburgh, Scotland (2006)Google Scholar
  77. 77.
    Seifert, C., Kump, B., Kienreich, W., Granitzer, G., Granitzer, M.: On the beauty and usability of tag clouds. In: 12th International Conference Information Visualisation, 2008, IV 2008, pp. 17–25. IEEE (2008)Google Scholar
  78. 78.
    Sinclair, J., Cardew-Hall, M.: The folksonomy tag cloud: when is it useful? J. Inf. Sci. 34(1), 15–29 (2008)CrossRefGoogle Scholar
  79. 79.
    Singer, P., Helic, D., Hotho, A., Strohmaier, M.: Hyptrails: a bayesian approach for comparing hypotheses about human trails on the web. In: Proceedings of the 24th International Conference on World Wide Web, International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland WWW 2015, pp. 1003–1013 (2015)Google Scholar
  80. 80.
    Skoutas, D., Alrifai, M.: Tag clouds revisited. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM 2011, pp. 221–230. ACM, New York (2011)Google Scholar
  81. 81.
    Specia, L., Motta, E.: Integrating folksonomies with the semantic web. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 624–639. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72667-8_44CrossRefGoogle Scholar
  82. 82.
    Trattner, C., Lin, Y., Parra, D., Yue, Z., Real, W., Brusilovsky, P.: Evaluating tag-based information access in image collections. In: Proceedings of the 23rd ACM Conference on Hypertext and Social Media, HT 2012, pp. 113–122. ACM, New York (2012)Google Scholar
  83. 83.
    Tufte, E.R.: Beautiful Evidence. Graphis Press, New York City (2006)Google Scholar
  84. 84.
    Venetis, P., Koutrika, G., Garcia-Molina, H.: On the selection of tags for tag clouds. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, WSDM 2011, pp. 835–844. ACM, New York (2011)Google Scholar
  85. 85.
    Viegas, F.B., Wattenberg, M., Feinberg, J.: Participatory visualization with wordle. IEEE Trans. Vis. Comput. Graph. 15(6), 1137–1144 (2009)CrossRefGoogle Scholar
  86. 86.
    Vig, J., Sen, S.: Computing the tag genome. Technical report, 10 September 2010Google Scholar
  87. 87.
    Vig, J., Sen, S., Riedl, J.: Navigating the tag genome. In: Proceedings of the 16th International Conference on Intelligent User Interfaces, IUI 2011, pp. 93–102. ACM, New York (2011)Google Scholar
  88. 88.
    Vig, J., Sen, S., Riedl, J.: The tag genome: encoding community knowledge to support novel interaction. ACM Trans. Interact. Intell. Syst. (TiiS) 2(3), 13 (2012)Google Scholar
  89. 89.
    Wagner, C., Singer, P., Strohmaier, M., Huberman, B.A.: Semantic stability in social tagging streams. In: Proceedings of the 23rd International Conference on World Wide Web, WWW 2014, pp. 735–746. ACM, New York (2014).  https://doi.org/10.1145/2566486.2567979
  90. 90.
    Watts, D.J., Dodds, P.S., Newman, M.E.: Identity and search in social networks. Science 296(5571), 1302–1305 (2002)CrossRefGoogle Scholar
  91. 91.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of small-worldnetworks. Nature 393(6684), 440–442 (1998)CrossRefzbMATHGoogle Scholar
  92. 92.
    West, R., Leskovec, J.: Human wayfinding in information networks. In: Proceedings of the 21st International Conference on World Wide Web, WWW 2012, pp. 619–628. ACM, New York, (2012)Google Scholar
  93. 93.
    Zhong, S.: Efficient online spherical k-means clustering. In: Proceedings, 2005 IEEE International Joint Conference on Neural Networks, IJCNN 2005, vol. 5, pp. 3180–3185. IEEE (2005)Google Scholar
  94. 94.
    Zubiaga, A.: Enhancing navigation on wikipedia with social tags. CoRR abs/1202.5469 (2012). http://arxiv.org/abs/1202.5469
  95. 95.
    Zubiaga, A., García-Plaza, A.P., Fresno, V., Martínez, R.: Content-based clustering for tag cloud visualization. In: Proceedings of the 2009 International Conference on Advances in Social Network Analysis and Mining, ASONAM 2009, pp. 316–319. IEEE Computer Society, Washington (2009)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GESIS – Leibniz Institute for the Social SciencesUniversity of Koblenz-LandauCologneGermany
  2. 2.Graz University of TechnologyGrazAustria
  3. 3.GESIS – Leibniz Institute for the Social SciencesRWTH Aachen UniversityCologneGermany

Personalised recommendations