Advertisement

Recommendations Based on Social Links

  • Danielle Lee
  • Peter Brusilovsky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10100)

Abstract

The goal of this chapter is to give an overview of recent works on the development of social link-based recommender systems and to offer insights on related issues, as well as future directions for research. Among several kinds of social recommendations, this chapter focuses on recommendations, which are based on users’ self-defined (i.e., explicit) social links and suggest items, rather than people of interest. The chapter starts by reviewing the needs for social link-based recommendations and studies that explain the viability of social networks as useful information sources. Following that, the core part of the chapter dissects and examines modern research on social link-based recommendations along several dimensions. It concludes with a discussion of several important issues and future directions for social link-based recommendation research.

References

  1. 1.
    Acquisti, A., Taylor, C., Wagman, L.: The economics of privacy. J. Econ. Lit. 54(2), 442–492 (2016)CrossRefGoogle Scholar
  2. 2.
    Akehurst, J., et al.: CCR: a content-collaborative reciprocal recommender for online dating. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, vol. 3. AAAI Press (2011)Google Scholar
  3. 3.
    Akther, A., Kim, H.-N., Rawashdeh, M., El Saddik, A.: Applying latent semantic analysis to tag-based community recommendations. In: Kosseim, L., Inkpen, D. (eds.) AI 2012. LNCS (LNAI), vol. 7310, pp. 1–12. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30353-1_1CrossRefGoogle Scholar
  4. 4.
    Al-Oufi, S., Kim, H.-N., Saddik, A.E.: A group trust metric for identifying people of trust in online social networks. Expert Syst. Appl. 39(18), 13173–13181 (2012)CrossRefGoogle Scholar
  5. 5.
    Al-sharawneh, J., Williams, M.: Credibility-aware web-based social network recommender: follow the leader. In: Proceedings of the 2nd ACM RecSys Workshop on Recommender Systems and the Social Web, Barcelona, Spain (2010)Google Scholar
  6. 6.
    Arazy, O., Kumar, N., Shapira, B.: Improving social recommender systems. IT Prof. 11(4), 38–44 (2009)CrossRefGoogle Scholar
  7. 7.
    Baatarjav, E.-A., Phithakkitnukoon, S., Dantu, R.: Group recommendation system for Facebook. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2008. LNCS, vol. 5333, pp. 211–219. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88875-8_41CrossRefGoogle Scholar
  8. 8.
    Bellogín, A., et al.: An empirical comparison of social, collaborative filtering, and hybrid recommenders. ACM Trans. Intell. Syst. Technol. 4(1), 1–29 (2013)CrossRefGoogle Scholar
  9. 9.
    Bellogin, A., Parapar, J.: Using graph partitioning techniques for neighbour selection in user-based collaborative filtering. In: Proceedings of the Sixth ACM Conference on Recommender Systems, pp. 213–216. ACM, Dublin (2012)Google Scholar
  10. 10.
    Berkovsky, S., Freyne, J.: Group-based recipe recommendations: analysis of data aggregation strategies. In: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 111–118. ACM, Barcelona (2010)Google Scholar
  11. 11.
    Bobadilla, J., et al.: Recommender systems survey. Knowl.-Based Syst. 46, 109–132 (2013)CrossRefGoogle Scholar
  12. 12.
    Bogers, T.: Tag-based recommendation. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 441–479. Springer, Cham (2018)Google Scholar
  13. 13.
    Bonhard, P., Sasse, M.: ‘Knowing me, knowing you’—using profiles and social networking to improve recommender systems. BT Technol. J. 24(3), 84–98 (2006)CrossRefGoogle Scholar
  14. 14.
    Bonhard, P., Sasse, M.A., Harries, C.: “The devil you know knows best”: how online recommendations can benefit from social networking. In: Proceedings of the 21st British CHI Group Annual Conference on HCI 2007: People and Computers XXI: HCI… But Not as We Know It, vol. 1, pp. 77–86. British Computer Society: University of Lancaster, United Kingdom (2007)Google Scholar
  15. 15.
    Bonhard, P., Sasse, M.A., Harries, C.: “The devil you know knows best”: how online recommendations can benefit from social networking. In: Proceedings of the 21st British HCI Group Annual Conference on People and Computers: HCI… But Not as We Know It, vol. 1, pp. 77–86. British Computer Society: University of Lancaster, United Kingdom (2007)Google Scholar
  16. 16.
    Bostandjiev, S., et al.: LinkedVis: exploring social and semantic career recommendations. In: Proceedings of the 2013 International Conference on Intelligent User Interfaces, pp. 107–116. ACM, Santa Monica (2013)Google Scholar
  17. 17.
    Bothorel, C.C., et al.: Location recommendation with social media data. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 624–653. Springer, Cham (2018)Google Scholar
  18. 18.
    Bourke, S., McCarthy, K., Smyth, B.: Power to the people: exploring neighbourhood formations in social recommender system. In: Proceedings of the Fifth ACM Conference on Recommender Systems, pp. 337–340. ACM, Chicago (2011)Google Scholar
  19. 19.
    Breslin, J., Decker, S.: The future of social networks on the internet: the need for semantics. IEEE Internet Comput. 11(6), 86–90 (2007)CrossRefGoogle Scholar
  20. 20.
    Brzozowski, M.J., Hogg, T., Szabo, G.: Friends and foes: ideological social networking. In: Proceeding of the Twenty-Sixth Annual SIGCHI Conference on Human Factors in Computing Systems, pp. 817–820. ACM, Florence (2008)Google Scholar
  21. 21.
    Cantador, I., Castells, P.: Group recommender systems: new perspectives in the social web. In: Pazos Arias, J.J., Vilas, A.F., Díaz Redondo, R.P. (eds.) Recommender Systems for the Social Web. Intelligent Systems Reference Library, vol. 32, pp. 139–157. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-25694-3_7CrossRefGoogle Scholar
  22. 22.
    Carrer-Neto, W., et al.: Social knowledge-based recommender system. Application to the movies domain. Expert Syst. Appl. 39(12), 10990–11000 (2012)CrossRefGoogle Scholar
  23. 23.
    Centola, D., et al.: Homophily, cultural drift, and the co-evolution of cultural groups. J. Conflict Resolut. 51(6), 905–929 (2007)CrossRefGoogle Scholar
  24. 24.
    Chen, C.C., et al.: An effective recommendation method for cold start new users using trust and distrust networks. Inf. Sci. 224, 19–36 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Chen, J., Liu, Y., Li, D.: Dynamic group recommendation with modified collaborative filtering and temporal factor. Int. Arab J. Inf. Technol. (IAJIT) 13(2), 294–301 (2016)Google Scholar
  26. 26.
    Chia, P.H., Pitsilis, G.: Exploring the use of explicit trust links for filtering recommenders: a study on Epinions.com. Inf. Media Technol. 6(3), 871–883 (2011)Google Scholar
  27. 27.
    Christensen, I., Schiaffino, S., Armentano, M.: Social group recommendation in the tourism domain. J. Intell. Inf. Syst. 47(2), 209–231 (2016)CrossRefGoogle Scholar
  28. 28.
    Chu, S.-C., Kim, Y.: Determinants of consumer engagement in electronic word-of-mouth (eWOM) in social networking sites. Int. J. Advert. 30(1), 47–75 (2011)CrossRefGoogle Scholar
  29. 29.
    Crandall, D., et al.: Feedback effects between similarity and social influence in online communities. In: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 160–168. ACM, Las Vegas (2008)Google Scholar
  30. 30.
    De Meo, P., et al.: Improving recommendation quality by merging collaborative filtering and social relationships. In: 2011 11th International Conference on Intelligent Systems Design and Applications (ISDA) (2011)Google Scholar
  31. 31.
    Debnath, S., Ganguly, N., Mitra, P.: Feature weighting in content based recommendation system using social network analysis. In: Proceeding of the 17th International Conference on World Wide Web, pp. 1041–1042. ACM, Beijing (2008)Google Scholar
  32. 32.
    Deng, S., Huang, L., Xu, G.: Social network-based service recommendation with trust enhancement. Expert Syst. Appl. 41(18), 8075–8084 (2014)CrossRefGoogle Scholar
  33. 33.
    Deutsch, M., Gerard, H.: A study of normative and informational social influences upon individual judgement. J. Abnorm. Soc. Psychol. 51(3), 629–636 (1955)CrossRefGoogle Scholar
  34. 34.
    Dey, R., Jelveh, Z., Ross, K.: Facebook users have become much more private: a large-scale study. In: 2012 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops) (2012)Google Scholar
  35. 35.
    Diaz-Aviles, E., et al.: Real-time top-n recommendation in social streams. In: Proceedings of the Sixth ACM Conference on Recommender Systems, pp. 59–66. ACM, Dublin (2012)Google Scholar
  36. 36.
    Dugan, C., et al.: The dogear game: a social bookmark recommender system. In: Proceedings of the 2007 International ACM Conference on Supporting Group Work, pp. 387–390. ACM, Sanibel Island (2007)Google Scholar
  37. 37.
    Eirinaki, M., Louta, M.D., Varlamis, I.: A trust-aware system for personalized user recommendations in social networks. IEEE Trans. Syst. Man Cybern.: Syst. 44(4), 409–421 (2014)CrossRefGoogle Scholar
  38. 38.
    Ellison, N.B., et al.: Cultivating social resources on social network sites: Facebook relationship maintenance behaviors and their role in social capital processes. J. Comput.-Mediat. Commun. 19(4), 855–870 (2014)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Fiske, A.P.: The Four elementary forms of sociality: framework for a unified theory of social relations. Psychol. Rev. 99(4), 689–723 (1992)CrossRefGoogle Scholar
  40. 40.
    Fond, T.L., Neville, J.: Randomization tests for distinguishing social influence and homophily effects. In: Proceedings of the 19th International Conference on World Wide Web, pp. 601–610. ACM, Raleigh (2010)Google Scholar
  41. 41.
    Friedkin, N.E.: Structural bases of interpersonal influence in groups: a longitudinal case study. Am. Sociol. Rev. 58(6), 861–872 (1993)CrossRefGoogle Scholar
  42. 42.
    Golbeck, J.: Introduction to computing with social trust. In: Golbeck, J. (ed.) Computing with Social Trust. Human-Computer Interaction Series, pp. 1–5. Springer, London (2009).  https://doi.org/10.1007/978-1-84800-356-9_1CrossRefGoogle Scholar
  43. 43.
    Golbeck, J.: Trust and nuanced profile similarity in online social networks. ACM Trans. Web 3(4), 1–33 (2009)CrossRefGoogle Scholar
  44. 44.
    Golbeck, J., Hendler, J.: FilmTrust: movie recommendations using trust in web-based social networks. In: 3rd IEEE Consumer Communications and Networking Conference, CCNC 2006 (2006)Google Scholar
  45. 45.
    Golbeck, J., Hendler, J.: Inferring binary trust relationships in Web-based social networks. ACM Trans. Internet Technol. 6(4), 497–529 (2006)CrossRefGoogle Scholar
  46. 46.
    Goldberg, D., et al.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992)CrossRefGoogle Scholar
  47. 47.
    Groh, G., Ehmig, C.: Recommendations in taste related domains: collaborative filtering vs. social filtering. In: Proceedings of the 2007 International ACM Conference on Supporting Group Work, pp. 127–136. ACM, Sanibel Island (2007)Google Scholar
  48. 48.
    Gross, R., Acquisti, A.: Information revelation and privacy in online social networks. In: Proceedings of the 2005 ACM Workshop on Privacy in the Electronic Society, pp. 71–80. ACM, Alexandria (2005)Google Scholar
  49. 49.
    Gunes, I., et al.: Shilling attacks against recommender systems: a comprehensive survey. Artif. Intell. Rev. 42(4), 767–799 (2014)CrossRefGoogle Scholar
  50. 50.
    Gürsel, A., Sen, S.: Producing timely recommendations from social networks through targeted search. In: Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems, vol. 2, pp. 805–812. International Foundation for Autonomous Agents and Multiagent Systems, Budapest (2009)Google Scholar
  51. 51.
    Guy, I.: People recommendation on social media. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 570–623. Springer, Cham (2018)Google Scholar
  52. 52.
    Guy, I., et al.: Personalized recommendation of social software items based on social relations. In: The 2009 ACM Conference on Recommender Systems, RecSys 2009. ACM, New York (2009)Google Scholar
  53. 53.
    Guy, I., et al.: Social media recommendation based on people and tags. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 194–201. ACM, Geneva (2010)Google Scholar
  54. 54.
    Jamali, M., Ester, M.: TrustWalker: a random walk model for combining trust-based and item-based recommendation. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2009. ACM, Paris (2009)Google Scholar
  55. 55.
    Jamali, M., Ester, M.: Using a trust network to improve top-N recommendation. In: Proceedings of the Third ACM Conference on Recommender Systems, pp. 181–188. ACM, New York (2009)Google Scholar
  56. 56.
    Jamali, M., Ester, M.: A matrix factorization technique with trust propagation for recommendation in social networks. In: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 135–142. ACM, Barcelona (2010)Google Scholar
  57. 57.
    Jannach, D., Lerche, L., Zanker, M.: Recommending based on implicit feedback. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 510–569. Springer, Cham (2018)Google Scholar
  58. 58.
    Jiang, M., et al.: Social contextual recommendation. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 45–54. ACM, Maui (2012)Google Scholar
  59. 59.
    Jump, K.: A new kind of fame. In: Missourian, 21 July 2008Google Scholar
  60. 60.
    Kazienko, P., Musial, K., Kajdanowicz, T.: Multidimensional social network in the social recommender system. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 41(4), 746–759 (2011)CrossRefGoogle Scholar
  61. 61.
    Kim, H.-N., Rawashdeh, M., Saddik, A.E.: Tailoring recommendations to groups of users: a graph walk-based approach. In: Proceedings of the 2013 International Conference on Intelligent user Interfaces, pp. 15–24. ACM, Santa Monica (2013)Google Scholar
  62. 62.
    Klein, A., Ahlf, H., Sharma, V.: Social activity and structural centrality in online social networks. Telematics Inform. 32(2), 321–332 (2015)CrossRefGoogle Scholar
  63. 63.
    Kluver, D., Ekstrand, M., Konstan, J.: Rating-based collaborative filtering: algorithms and evaluation. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 344–390. Springer, Cham (2018)Google Scholar
  64. 64.
    Knijnenburg, B.P.: Privacy in social information access. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 19–74. Springer, Cham (2018)Google Scholar
  65. 65.
    Knijnenburg, B.P., et al.: Inspectability and control in social recommenders. In: Proceedings of the Sixth ACM Conference on Recommender Systems, pp. 43–50. ACM, Dublin (2012)Google Scholar
  66. 66.
    Kompan, M., Bielikova, M.: Personalized recommendation for individual users based on the group recommendation principles. Stud. Inform. Control 22(3), 331–342 (2013)CrossRefGoogle Scholar
  67. 67.
    Konstas, I., Stathopoulos, V., Jose, J.M.: On social networks and collaborative recommendation. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 195–202. ACM, Boston (2009)Google Scholar
  68. 68.
    Koren, Y., Bell, R.: Advances in collaborative filtering. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 77–118. Springer, Boston (2015).  https://doi.org/10.1007/978-1-4899-7637-6_3CrossRefGoogle Scholar
  69. 69.
    Krishnamurthy, B., Wills, C.E.: On the leakage of personally identifiable information via online social networks. In: Proceedings of the 2nd ACM Workshop on Online Social Networks, pp. 7–12. ACM, Barcelona (2009)Google Scholar
  70. 70.
    Kutty, S., Chen, L., Nayak, R.: A people-to-people recommendation system using tensor space models. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing, pp. 187–192. ACM, Trento (2012)Google Scholar
  71. 71.
    Lam, C.: SNACK: incorporating social network information in automated collaborative filtering. In: Proceedings of the 5th ACM Conference on Electronic Commerce, pp. 254–255. ACM, New York (2004)Google Scholar
  72. 72.
    Lee, D.: How to measure the information similarity in unilateral relations: the case study of Delicious. In: Proceedings of the International Workshop on Modeling Social Media, pp. 1–4. ACM, Toronto (2010)Google Scholar
  73. 73.
    Lee, D., Brusilovsky, P.: Improving recommendations using watching networks in a social tagging system. In: The Proceedings of iConference 2011, Seattle, WA, USA (2011)Google Scholar
  74. 74.
    Lee, D.H., Brusilovsky, P.: Does trust influence information similarity? In: Proceedings of Workshop on Recommender Systems & the Social Web, the 3rd ACM International Conference on Recommender Systems. ACM, New York (2009)Google Scholar
  75. 75.
    Lee, D.H., Brusilovsky, P.: Social networks and interest similarity: the case of CiteULike. In: Proceedings of the 21th ACM Conference on Hypertext and Hypermedia. ACM, Toronto (2010)Google Scholar
  76. 76.
    Lee, D.H., Brusilovsky, P.: Using self-defined group activities for improving recommendations in collaborative tagging systems. In: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 221–224. ACM, Barcelona (2010)Google Scholar
  77. 77.
    Lee, D.H., Brusilovsky, P., Schleyer, T.: Recommending collaborators using social features and MeSH terms. In: ASIST 2011 Annual Meeting, New Orleans, LA, USA (2011)Google Scholar
  78. 78.
    Liu, F., Lee, H.J.: Use of social network information to enhance collaborative filtering performance. Expert Syst. Appl. 37(7), 4772–4778 (2010)CrossRefGoogle Scholar
  79. 79.
    Lumbreras, A., Gavaldà, R.: Applying trust metrics based on user interactions to recommendation in social networks. In: Proceedings of the 2012 International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012), pp. 1159–1164. IEEE Computer Society (2012)Google Scholar
  80. 80.
    Ma, H., King, I., Lyu, M.R.: Learning to recommend with social trust ensemble. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 203–210. ACM, Boston (2009)Google Scholar
  81. 81.
    Ma, H., King, I., Lyu, M.R.: Learning to recommend with explicit and implicit social relations. ACM Trans. Intell. Syst. Technol. 2(3), 1–19 (2011)Google Scholar
  82. 82.
    Ma, H., et al.: SoRec: social recommendation using probabilistic matrix factorization. In: The 17th ACM Conference on Information and Knowledge Management: CIKM 2008. ACM Press, Napa Valley (2008)Google Scholar
  83. 83.
    Ma, H., et al.: Recommender systems with social regularization. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, pp. 287–296. ACM, Hong Kong (2011)Google Scholar
  84. 84.
    Macedo, A.Q., Marinho, L.B., Santos, R.L.T.: Context-aware event recommendation in event-based social networks. In: Proceedings of the 9th ACM Conference on Recommender Systems, pp. 123–130. ACM, Vienna (2015)Google Scholar
  85. 85.
    Machanavajjhala, A., Korolova, A., Sarma, A.D.: Personalized social recommendations: accurate or private. Proc. VLDB Endow. 4(7), 440–450 (2011)CrossRefGoogle Scholar
  86. 86.
    Maltz, D., Ehrlich, K.: Pointing the way: active collaborative filtering. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 202–209. ACM Press/Addison-Wesley Publishing Co., Denver/Colorado (1995)Google Scholar
  87. 87.
    Massa, P., Avesani, P.: Trust-aware bootstrapping of recommender systems. In: Proceedings of ECAI 2006 Workshop on Recommender Systems (2006)Google Scholar
  88. 88.
    Massa, P., Avesani, P.: Trust-aware recommender systems. In: Proceedings of the 2007 ACM Conference on Recommender Systems, pp. 17–24. ACM, Minneapolis (2007)Google Scholar
  89. 89.
    Massa, P., Avesani, P.: Trust metrics in recommender systems. In: Golbeck, J. (ed.) Computing with Social Trust. Human-Computer Interaction Series, pp. 259–285. Springer, London (2009).  https://doi.org/10.1007/978-1-84800-356-9_10CrossRefGoogle Scholar
  90. 90.
    McPherson, M., Lovin, S., Cook, J.: Birds of a feather: homophily in social networks. Ann. Rev. Sociol. 27, 415–445 (2001)CrossRefGoogle Scholar
  91. 91.
    Messenger, A., Whittle, J.: Recommendations based on user-generated comments in social media. In: 2011 IEEE Third International Conference on Social Computing (SocialCom), Privacy, Security, Risk and Trust (PASSAT) (2011)Google Scholar
  92. 92.
    Monge, P.E., Contractor, N.S.: Homophily, proximity, and social support theories. In: Theories of Communication Networks, pp. 223–239. Oxford, New York (2003)Google Scholar
  93. 93.
    Monge, P.E., Contractor, N.S.: Network concepts, measures, and the multitheoretical, multilevel analytic framework. In: Theories of Communication Networks, pp. 29–77. Oxford, New York (2003)Google Scholar
  94. 94.
    Moradi, P., Ahmadian, S.: A reliability-based recommendation method to improve trust-aware recommender systems. Expert Syst. Appl. 42(21), 7386–7398 (2015)CrossRefGoogle Scholar
  95. 95.
    Moradi, P., Ahmadian, S., Akhlaghian, F.: An effective trust-based recommendation method using a novel graph clustering algorithm. Phys. A 436, 462–481 (2015)CrossRefGoogle Scholar
  96. 96.
    Moshfeghi, Y., Piwowarski, B., Jose, J.M.: Handling data sparsity in collaborative filtering using emotion and semantic based features. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 625–634. ACM, Beijing (2011)Google Scholar
  97. 97.
    O’Mahoney, M., Smyth, B.: From opinions to recommendations. In: Brusilovsky, P., He, D. (eds.) Social Information Access. LNCS, vol. 10100, pp. 480–509. Springer, Cham (2018)Google Scholar
  98. 98.
    Oh, S., Syn, S.Y.: Motivations for sharing information and social support in social media: a comparative analysis of Facebook, Twitter, Delicious, YouTube, and Flickr. J. Assoc. Inf. Sci. Technol. 66(10), 2045–2060 (2015)CrossRefGoogle Scholar
  99. 99.
    Park, M.-H., Park, H.-S., Cho, S.-B.: Restaurant recommendation for group of people in mobile environments using probabilistic multi-criteria decision making. In: Lee, S., Choo, H., Ha, S., Shin, I.C. (eds.) APCHI 2008. LNCS, vol. 5068, pp. 114–122. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-70585-7_13CrossRefGoogle Scholar
  100. 100.
    Groh, G., Birnkammerer, S., Köllhofer, V.: Social recommender systems. In: Pazos Arias, J.J., et al. (eds.) Recommender Systems for the Social Web. Intelligent Systems Reference Library, vol. 32, pp. 3–42. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-25694-3_1CrossRefGoogle Scholar
  101. 101.
    Pera, M.S., Ng, Y.-K.: With a little help from my friends: generating personalized book recommendations using data extracted from a social website. In: Proceedings of the 2011 IEEE/WIC/ACM Joint Conference on Web Intelligent (WI 2011), Lyon, France, pp. 96–99 (2011)Google Scholar
  102. 102.
    Pitsilis, G., Knapskog, S.J.: Social trust as a solution to address sparsity-inherent problems of recommender systems. In: Proceedings of ACM RecSys 2009 Workshop on Recommender Systems and the Social Web, New York (2009)Google Scholar
  103. 103.
    Pizzato, L., et al.: Recommending people to people: the nature of reciprocal recommenders with a case study in online dating. User Model. User-Adap. Inter. 23, 1–42 (2012)Google Scholar
  104. 104.
    Pu, P., Chen, L., Hu, R.: Evaluating recommender systems from the user’s perspective: survey of the state of the art. User Model. User-Adap. Inter. 22(4–5), 317–355 (2012)CrossRefGoogle Scholar
  105. 105.
    Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (2002)Google Scholar
  106. 106.
    Sanchez, F., et al.: Social and content hybrid image recommender system for mobile social networks. Mob. Netw. Appl. 17, 1–14 (2012)CrossRefGoogle Scholar
  107. 107.
    Saridakis, G., et al.: Individual information security, user behaviour and cyber victimisation: an empirical study of social networking users. Technol. Forecast. Soc. Chang. 102, 320–330 (2016)CrossRefGoogle Scholar
  108. 108.
    Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72079-9_9CrossRefGoogle Scholar
  109. 109.
    Shani, G., Gunawardana, A.: Evaluating recommendation systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 257–297. Springer, Boston (2011).  https://doi.org/10.1007/978-0-387-85820-3_8CrossRefGoogle Scholar
  110. 110.
    Shardanand, U., Maes, P.: Social information filtering: algorithms for automating “word of mouth”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 210–217. ACM Press/Addison-Wesley Publishing Co., Denver (1995)Google Scholar
  111. 111.
    Shi, Y., Larson, M., Hanjalic, A.: Towards understanding the challenges facing effective trust-aware recommendation. In: Proceedings of the 2nd ACM RecSys Workshop on Recommender Systems and the Social Web, Barcelona, Spain (2010)Google Scholar
  112. 112.
    Singla, P., Richardson, M.: Yes, there is a correlation: - from social networks to personal behavior on the web. In: The 17th International Conference on World Wide Web, WWW 2008. ACM, Beijing (2008)Google Scholar
  113. 113.
    Sinha, R., Swearingen, K.: Comparing recommendations made by online systems and friends. In: DELOS Workshop on Personalisation and Recommender Systems in Digital Libraries. Dublin City University, Ireland (2001)Google Scholar
  114. 114.
    Sinha, R., Swearingen, K.: Comparing recommendations made by online systems and friends. In: Proceedings of the DELOS-NSF Workshop on Personalization and Recommender Systems in Digital Libraries (2001)Google Scholar
  115. 115.
    Stutzman, F., Gross, R., Acquisti, A.: Silent listeners: the evolution of privacy and disclosure on Facebook. J. Priv. Confid. 4(2), 2 (2013)Google Scholar
  116. 116.
    Su, X.: Collaborative filtering: a survey. In: 2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions) (2015)Google Scholar
  117. 117.
    Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009, 4 (2009)CrossRefGoogle Scholar
  118. 118.
    Subrahmanyam, K., et al.: Online and offline social networks: Use of social networking sites by emerging adults. J. Appl. Dev. Psychol. 29(6), 420–433 (2008)CrossRefGoogle Scholar
  119. 119.
    Sun, Z., et al.: Recommender systems based on social networks. J. Syst. Softw. 99, 109–119 (2015)CrossRefGoogle Scholar
  120. 120.
    Swamynathan, G., et al.: Do social networks improve e-commerce? A study on social marketplaces. In: Proceedings of the First Workshop on Online Social Networks, pp. 1–6. ACM, Seattle (2008)Google Scholar
  121. 121.
    Symeonidis, P., Tiakas, E., Manolopoulos, Y.: Product recommendation and rating prediction based on multi-modal social networks. In: Proceedings of the Fifth ACM Conference on Recommender Systems, pp. 61–68. ACM, Chicago (2011)Google Scholar
  122. 122.
    Tang, J., Chang, Y., Liu, H.: Mining social media with social theories: a survey. SIGKDD Explor. Newsl. 15(2), 20–29 (2014)CrossRefGoogle Scholar
  123. 123.
    Tang, J., Hu, X., Liu, H.: Social recommendation: a review. Soc. Netw. Anal. Min. 3(4), 1113–1133 (2013)CrossRefGoogle Scholar
  124. 124.
    Terveen, L., McDonald, D.W.: Social matching: a framework and research agenda. ACM Trans. Comput.-Hum. Interact. 12(3), 401–434 (2005)CrossRefGoogle Scholar
  125. 125.
    Tintarev, N., Masthoff, J.: Effective explanations of recommendations: user-centered design. In: Proceedings of the 2007 ACM Conference on Recommender Systems, pp. 153–156. ACM, Minneapolis (2007)Google Scholar
  126. 126.
    Tong, H., Faloutsos, C., Pan, J.-Y.: Random walk with restart: fast solutions and applications. Knowl. Inf. Syst. 14(3), 327–346 (2008)CrossRefzbMATHGoogle Scholar
  127. 127.
    Turner, J.C.: Social Influence. Brooks/Cole, Pacific Grove (1991)Google Scholar
  128. 128.
    Turner, J.C., Reynolds, K.J.: Self-categorization theory. In: Fiske, S.T., Gilbert, D.T., Lindzey, G. (eds.) Handbook of Social Psychology. Wiley, Hoboken (2010)Google Scholar
  129. 129.
    Victor, P., et al.: Trust Networks for Recommender Systems, pp. 91–107. Atlantis Press (2011)Google Scholar
  130. 130.
    Victor, P., et al.: A comparative analysis of trust-enhanced recommenders for controversial items (2009)Google Scholar
  131. 131.
    Vu, X.T., Abel, M.-H., Morizet-Mahoudeaux, P.: A user-centered and group-based approach for social data filtering and sharing. Comput. Hum. Behav. 51, Part B, 1012–1023 (2015)CrossRefGoogle Scholar
  132. 132.
    Wang, H., Li, G., Feng, J.: Group-based personalized location recommendation on social networks. In: Chen, L., Jia, Y., Sellis, T., Liu, G. (eds.) APWeb 2014. LNCS, vol. 8709, pp. 68–80. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11116-2_7CrossRefGoogle Scholar
  133. 133.
    Wang, H., Terrovitis, M., Mamoulis, N.: Location recommendation in location-based social networks using user check-in data. In: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. pp. 374–383. ACM, Orlando (2013)Google Scholar
  134. 134.
    Wang, J., et al.: Recommending Flickr groups with social topic model. Inf. Retrieval 15(3–4), 278–295 (2012)CrossRefGoogle Scholar
  135. 135.
    Wang, Z., Yang, Y., Hu, Q., He, L.: An empirical study of personal factors and social effects on rating prediction. In: Cao, T., Lim, E.-P., Zhou, Z.-H., Ho, T.-B., Cheung, D., Motoda, H. (eds.) PAKDD 2015. LNCS (LNAI), vol. 9077, pp. 747–758. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18038-0_58CrossRefGoogle Scholar
  136. 136.
    Wellman, B.: Computer networks as social networks. Science 293(5537), 2031–2034 (2001)CrossRefGoogle Scholar
  137. 137.
    Weng, J., et al.: TwitterRank: finding topic-sensitive influential Twitterers. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 261–270. ACM, New York (2010)Google Scholar
  138. 138.
    Xu, Y., et al.: Combining social network and semantic concept analysis for personalized academic researcher recommendation. Decis. Support Syst. 54(1), 564–573 (2012)CrossRefGoogle Scholar
  139. 139.
    Yang, X., et al.: A survey of collaborative filtering based social recommender systems. Comput. Commun. 41, 1–10 (2014)CrossRefGoogle Scholar
  140. 140.
    Yang, X., Steck, H., Liu, Y.: Circle-based recommendation in online social networks. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1267–1275. ACM, Beijing (2012)Google Scholar
  141. 141.
    Ye, M., Liu, X., Lee, W.-C.: Exploring social influence for recommendation: a generative model approach. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 671–680. ACM, Portland (2012)Google Scholar
  142. 142.
    Yeung, C.A., et al.: Decentralization: the future of online social networking. In: W3C Workshop on the Future of Social Networking Position Papers. Citeseer (2009)Google Scholar
  143. 143.
    Yoon, H., et al.: Social itinerary recommendation from user-generated digital trails. Pers. Ubiquit. Comput. 16(5), 469–484 (2012)CrossRefGoogle Scholar
  144. 144.
    Yuan, Q., Chen, L., Zhao, S.: Factorization vs. regularization: fusing heterogeneous social relationships in top-n recommendation. In: Proceedings of the Fifth ACM Conference on Recommender Systems, pp. 245–252. ACM, Chicago (2011)Google Scholar
  145. 145.
    Yuan, W., et al.: Improved trust-aware recommender system using small-worldness of trust networks. Knowl.-Based Syst. 23(3), 232–238 (2010)CrossRefGoogle Scholar
  146. 146.
    Zhang, F.-G.: Preventing recommendation attack in trust-based recommender systems. J. Comput. Sci. Technol. 26(5), 823–828 (2011)CrossRefGoogle Scholar
  147. 147.
    Zhang, J., Wang, Y., Vassileva, J.: SocConnect: a personalized social network aggregator and recommender. Inf. Process. Manag. 49(3), 721–737 (2013)CrossRefGoogle Scholar
  148. 148.
    Zhou, X., et al.: The state-of-the-art in personalized recommender systems for social networking. Artif. Intell. Rev. 37(2), 119–132 (2012)CrossRefGoogle Scholar
  149. 149.
    Zhu, S., Chen, J.: E-commerce use in urbanising China: the role of normative social influence. Behav. Inf. Technol. 35(5), 357–367 (2016)CrossRefGoogle Scholar
  150. 150.
    Ziqi, W., et al.: Recommendation algorithm based on graph-model considering user background information. In: 2011 Ninth International Conference on Creating, Connecting and Collaborating through Computing (C5) (2011)Google Scholar
  151. 151.
    Zou, J., Fekri, F.: A belief propagation approach for detecting shilling attacks in collaborative filtering. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, pp. 1837–1840. ACM, San Francisco (2013)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of SoftwareSangmyung UniversityCheonan-siKorea
  2. 2.School of Computing and InformationUniversity of PittsburghPittsburghUSA

Personalised recommendations