Advertisement

Energy-Utility Analysis of Probabilistic Systems with Exogenous Coordination

  • Christel Baier
  • Philipp Chrszon
  • Clemens Dubslaff
  • Joachim Klein
  • Sascha Klüppelholz
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10865)

Abstract

We present an extension of the popular probabilistic model checker \(\textsc {Prism}\) with multi-actions that enables the modeling of complex coordination between stochastic components in an exogenous manner. This is supported by tooling that allows the use of the exogenous coordination language \(\textsc {Reo}\) for specifying the coordination glue code. The tool provides an automatic compilation feature for translating a \(\textsc {Reo}\) network of channels into \(\textsc {Prism}\)’s guarded command language. Additionally, the tool supports the translation of reward monitoring components that can be attached to the \(\textsc {Reo}\) network to assign rewards or cost to activity within the coordination network. The semantics of the translated model is then based on weighted Markov decision processes that yield the basis, e.g., for a quantitative analysis using \(\textsc {Prism}\). Feasibility of the approach is shown by a quantitative analysis of an energy-aware network system example modeled with a role-based modeling approach in \(\textsc {Reo}\).

References

  1. 1.
    Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods Syst. Des. 15(1), 7–48 (1999)CrossRefGoogle Scholar
  2. 2.
    Arbab, F.: Reo: a channel-based coordination model for component composition. Math. Struct. Comput. Sci. 14, 329–366 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Arbab, F., Aştefănoaei, L., de Boer, F.S., Dastani, M., Meyer, J.-J., Tinnermeier, N.: Reo connectors as coordination artifacts in 2APL systems. In: Bui, T.D., Ho, T.V., Ha, Q.T. (eds.) PRIMA 2008. LNCS (LNAI), vol. 5357, pp. 42–53. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89674-6_8CrossRefGoogle Scholar
  4. 4.
    Arbab, F., Chothia, T., van der Mei, R., Meng, S., Moon, Y.J., Verhoef, C.: From coordination to stochastic models of QoS. In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 268–287. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02053-7_14CrossRefGoogle Scholar
  5. 5.
    Arbab, F., Kokash, N., Meng, S.: Towards using Reo for compliance-aware business process modeling. In: Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 108–123. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88479-8_9CrossRefGoogle Scholar
  6. 6.
    Arbab, F., Meng, S., Moon, Y., Kwiatkowska, M.Z., Qu, H.: Reo2MC: a tool chain for performance analysis of coordination models. In: ESEC/SIGSOFT FSE 2009, pp. 287–288. ACM (2009)Google Scholar
  7. 7.
    Baier, C.: Probabilistic models for Reo connector circuits. J. Univ. Comput. Sci. 11(10), 1718–1748 (2005)Google Scholar
  8. 8.
    Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: Formal verification for components and connectors. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E. (eds.) FMCO 2008. LNCS, vol. 5751, pp. 82–101. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04167-9_5CrossRefGoogle Scholar
  9. 9.
    Baier, C., Chrszon, P., Dubslaff, C., Klein, J., Klüppelholz, S.: Energy-utility analysis of probabilistic systems with exogenous coordination (extended version) (2018). http://wwwtcs.inf.tu-dresden.de/ALGI/PUB/FA18/
  10. 10.
    Baier, C., Daum, M., Dubslaff, C., Klein, J., Klüppelholz, S.: Energy-utility quantiles. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 285–299. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06200-6_24CrossRefGoogle Scholar
  11. 11.
    Baier, C., Dubslaff, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Probabilistic model checking for energy-utility analysis. In: van Breugel, F., Kashefi, E., Palamidessi, C., Rutten, J. (eds.) Horizons of the Mind. A Tribute to Prakash Panangaden. LNCS, vol. 8464, pp. 96–123. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06880-0_5CrossRefGoogle Scholar
  12. 12.
    Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.: Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)CrossRefzbMATHGoogle Scholar
  13. 13.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  14. 14.
    Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connectors in Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Baier, C., Wolf, V.: Stochastic reasoning about channel-based component connectors. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol. 4038, pp. 1–15. Springer, Heidelberg (2006).  https://doi.org/10.1007/11767954_1CrossRefGoogle Scholar
  16. 16.
    Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-60692-0_70CrossRefGoogle Scholar
  17. 17.
    Chrszon, P., Dubslaff, C., Baier, C., Klein, J., Klüppelholz, S.: Modeling role-based systems with exogenous coordination. In: Ábrahám, E., Bonsangue, M., Johnsen, E.B. (eds.) Theory and Practice of Formal Methods. LNCS, vol. 9660, pp. 122–139. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-30734-3_10CrossRefGoogle Scholar
  18. 18.
    Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a modern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63390-9_31CrossRefGoogle Scholar
  19. 19.
    Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification techniques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21455-4_3CrossRefGoogle Scholar
  20. 20.
    Forejt, V., Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Quantitative multi-objective verification for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 112–127. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19835-9_11CrossRefGoogle Scholar
  21. 21.
    Forejt, V., Kwiatkowska, M., Parker, D.: Pareto curves for probabilistic model checking. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, pp. 317–332. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33386-6_25CrossRefGoogle Scholar
  22. 22.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects Comput. 6, 512–535 (1994)CrossRefzbMATHGoogle Scholar
  23. 23.
    He, K., Hermanns, H., Chen, Y.: Models of connected things: on priced probabilistic timed Reo. In: 41st IEEE Annual Computer Software and Applications Conference (COMPSAC 2017), vol. 1, pp. 234–243 (2017)Google Scholar
  24. 24.
    Hennicker, R., Klarl, A.: Foundations for ensemble modeling – the Helena approach. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp. 359–381. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54624-2_18CrossRefGoogle Scholar
  25. 25.
    Hermanns, H.: Interactive Markov chains. Ph.D. thesis, University of Erlangen-Nuremberg, Germany (1999)Google Scholar
  26. 26.
    Hillston, J.: A compositional approach to performance modelling. Ph.D. thesis, University of Edinburgh, UK (1994)Google Scholar
  27. 27.
    Jongmans, S.T.Q., Arbab, F.: Overview of thirty semantic formalisms for Reo. Sci. Ann. Comput. Sci. 22(1), 201–251 (2012)MathSciNetGoogle Scholar
  28. 28.
    Jongmans, S.-S.T.Q., Santini, F., Sargolzaei, M., Arbab, F., Afsarmanesh, H.: Automatic code generation for the orchestration of web services with Reo. In: De Paoli, F., Pimentel, E., Zavattaro, G. (eds.) ESOCC 2012. LNCS, vol. 7592, pp. 1–16. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33427-6_1CrossRefGoogle Scholar
  29. 29.
    Kallenberg, L.: Markov Decision Processes. Lecture Notes, University of Leiden (2011)Google Scholar
  30. 30.
    Kokash, N., Arbab, F.: Formal design and verification of long-running transactions with extensible coordination tools. IEEE Trans. Serv. Comput. 6(2), 186–200 (2013)CrossRefGoogle Scholar
  31. 31.
    Kokash, N., Krause, C., de Vink, E.: Reo + mCRL2: a framework for model-checking dataflow in service compositions. Formal Aspects Comput. 24(2), 187–216 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Kühn, T., Leuthäuser, M., Götz, S., Seidl, C., Aßmann, U.: A metamodel family for role-based modeling and programming languages. In: Combemale, B., Pearce, D.J., Barais, O., Vinju, J.J. (eds.) SLE 2014. LNCS, vol. 8706, pp. 141–160. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11245-9_8Google Scholar
  33. 33.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22110-1_47CrossRefGoogle Scholar
  34. 34.
    Kwiatkowska, M.Z., Norman, G., Parker, D., Sproston, J.: Performance analysis of probabilistic timed automata using digital clocks. Formal Methods Syst. Des. 29(1), 33–78 (2006)CrossRefzbMATHGoogle Scholar
  35. 35.
    Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification of real-time systems with discrete probability distributions. Theoret. Comput. Sci. 282(1), 101–150 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Li, Y., Zhang, X., Ji, Y., Sun, M.: Capturing stochastic and real-time behavior in Reo connectors. In: Cavalheiro, S., Fiadeiro, J. (eds.) SBMF 2017. LNCS, vol. 10623, pp. 287–304. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70848-5_18CrossRefGoogle Scholar
  37. 37.
    Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with generalized stochastic Petri nets. SIGMETRICS Perform. Eval. Rev. 26(2), 2 (1998)CrossRefzbMATHGoogle Scholar
  38. 38.
    Moon, Y., Silva, A., Krause, C., Arbab, F.: A compositional model to reason about end-to-end QoS in stochastic Reo connectors. Sci. Comput. Program. 80, 3–24 (2014)CrossRefGoogle Scholar
  39. 39.
    Moon, Y.-J., Arbab, F., Silva, A., Stam, A., Verhoef, C.: Stochastic Reo: a case study. In: Workshop on Harnessing Theories for Tool Support in Software (TTSS 2011), pp. 90–105 (2011)Google Scholar
  40. 40.
    Oliveira, N., Silva, A., Barbosa, L.S.: Imc\({}_{\text{ reo }}\): interactive Markov chains for stochastic Reo. J. Internet Serv. Inf. Secur. 5(1), 3–28 (2015)Google Scholar
  41. 41.
    Papadopoulos, G.A., Arbab, F.: Coordination models and languages. Adv. Comput. 46, 329–400 (1998)CrossRefGoogle Scholar
  42. 42.
    Parker, D.: Implementation of symbolic model checking for probabilistic systems. Ph.D. thesis, University of Birmingham (2002)Google Scholar
  43. 43.
  44. 44.
  45. 45.
    Proença, J.: Synchronous coordination of distributed components. Ph.D. thesis, Leiden University (2011)Google Scholar
  46. 46.
    Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New York (1994)CrossRefzbMATHGoogle Scholar
  47. 47.
  48. 48.
    Zhu, H., Zhou, M.: Roles in information systems: a survey. IEEE Trans. Syst. Man Cybern. Part C 38(3), 377–396 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Computer ScienceTechnische Universität DresdenDresdenGermany

Personalised recommendations