Advertisement

Rationality and Context in Defeasible Subsumption

  • Katarina Britz
  • Ivan VarzinczakEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10833)

Abstract

Description logics have been extended in a number of ways to support defeasible reasoning in the KLM tradition. Such features include preferential or rational defeasible concept subsumption, and defeasible roles in complex concept descriptions. Semantically, defeasible subsumption is obtained by means of a preference order on objects, while defeasible roles are obtained by adding a preference order to role interpretations. In this paper, we address an important limitation in defeasible extensions of description logics, namely the restriction in the semantics of defeasible concept subsumption to a single preference order on objects. We do this by inducing a modular preference order on objects from each preference order on roles, and use these to relativise defeasible subsumption. This yields a notion of contextualised rational defeasible subsumption, with contexts described by roles. We also provide a semantic construction for and a method for the computation of contextual rational closure, and present a correspondence result between the two.

Notes

Acknowledgements

This work is based on research supported in part by the National Research Foundation of South Africa (Grant Number 103345).

References

  1. 1.
    Amgoud, L., Parsons, S., Perrussel, L.: An argumentation framework based on contextual preferences. In: Proceedings of International Conference on Formal and Applied and Practical Reasoning (FAPR), pp. 59–67 (2000)Google Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation and Applications, 2nd edn. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  3. 3.
    Bikakis, A., Antoniou, G.: Defeasible contextual reasoning with arguments in ambient intelligence. IEEE Trans. Knowl. Data Eng. 22(11), 1492–1506 (2010)CrossRefGoogle Scholar
  4. 4.
    Bonatti, P., Faella, M., Petrova, I., Sauro, L.: A new semantics for overriding in description logics. Artif. Intell. 222, 1–48 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bonatti, P., Faella, M., Sauro, L.: Defeasible inclusions in low-complexity DLs. J. Artif. Intell. Res. 42, 719–764 (2011)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bonatti, P., Lutz, C., Wolter, F.: The complexity of circumscription in description logic. J. Artif. Intell. Res. 35, 717–773 (2009)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Booth, R., Casini, G., Meyer, T., Varzinczak, I.: On the entailment problem for a logic of typicality. In: Proceedings of 24th International Joint Conference on Artificial Intelligence (IJCAI) (2015)Google Scholar
  8. 8.
    Booth, R., Meyer, T., Varzinczak, I.: PTL: a propositional typicality logic. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp. 107–119. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33353-8_9CrossRefGoogle Scholar
  9. 9.
    Booth, R., Meyer, T., Varzinczak, I.: A propositional typicality logic for extending rational consequence. In: Fermé, E., Gabbay, D., Simari, G. (eds.) Trends in Belief Revision and Argumentation Dynamics. Studies in Logic - Logic and Cognitive Systems, vol. 48, pp. 123–154. King’s College Publications, London (2013)Google Scholar
  10. 10.
    Booth, R., Paris, J.: A note on the rational closure of knowledge bases with both positive and negative knowledge. J. Logic Lang. Inform. 7(2), 165–190 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Boutilier, C.: Conditional logics of normality: a modal approach. Artif. Intell. 68(1), 87–154 (1994)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Britz, K., Casini, G., Meyer, T., Moodley, K., Varzinczak, I.: Ordered interpretations and entailment for defeasible description logics. Technical report, CAIR, CSIR Meraka and UKZN, South Africa (2013). http://tinyurl.com/cydd6yy
  13. 13.
    Britz, K., Casini, G., Meyer, T., Varzinczak, I.: Preferential role restrictions. In: Proceedings of 26th International Workshop on Description Logics, pp. 93–106 (2013)Google Scholar
  14. 14.
    Britz, K., Heidema, J., Meyer, T.: Semantic preferential subsumption. In: Lang, J., Brewka, G. (eds.) Proceedings of 11th International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 476–484. AAAI Press/MIT Press (2008)Google Scholar
  15. 15.
    Britz, K., Meyer, T., Varzinczak, I.: Semantic foundation for preferential description logics. In: Wang, D., Reynolds, M. (eds.) AI 2011. LNCS (LNAI), vol. 7106, pp. 491–500. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25832-9_50CrossRefGoogle Scholar
  16. 16.
    Britz, K., Varzinczak, I.: From KLM-style conditionals to defeasible modalities, and back. J. Appl. Non-Class. Log. (to appear)Google Scholar
  17. 17.
    Britz, K., Varzinczak, I.: Preferential accessibility and preferred worlds. J. Log. Lang. Inf. (to appear)Google Scholar
  18. 18.
    Britz, K., Varzinczak, I.: Defeasible modalities. In: Proceedings of 14th Conference on Theoretical Aspects of Rationality and Knowledge (TARK), pp. 49–60 (2013)Google Scholar
  19. 19.
    Britz, K., Varzinczak, I.: Introducing role defeasibility in description logics. In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 174–189. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48758-8_12CrossRefzbMATHGoogle Scholar
  20. 20.
    Britz, K., Varzinczak, I.: Preferential modalities revisited. In: Proceedings of 16th International Workshop on Nonmonotonic Reasoning (NMR) (2016)Google Scholar
  21. 21.
    Britz, K., Varzinczak, I.: Context-based defeasible subsumption for \(d\cal{SROIQ}\). In: Proceedings of 13th International Symposium on Logical Formalizations of Commonsense Reasoning (2017)Google Scholar
  22. 22.
    Britz, K., Varzinczak, I.: Towards defeasible \(d\cal{SROIQ}\). In: Proceedings of 30th International Workshop on Description Logics, vol. 1879. CEUR Workshop Proceedings (2017)Google Scholar
  23. 23.
    Casini, G., Meyer, T., Moodley, K., Sattler, U., Varzinczak, I.: Introducing defeasibility into OWL ontologies. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 409–426. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25010-6_27CrossRefGoogle Scholar
  24. 24.
    Casini, G., Straccia, U.: Rational closure for defeasible description logics. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS (LNAI), vol. 6341, pp. 77–90. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15675-5_9CrossRefzbMATHGoogle Scholar
  25. 25.
    Casini, G., Straccia, U.: Defeasible inheritance-based description logics. J. Artif. Intell. Res. (JAIR) 48, 415–473 (2013)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Preferential description logics. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 257–272. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75560-9_20CrossRefGoogle Scholar
  27. 27.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Reasoning about typicality in preferential description logics. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 192–205. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-87803-2_17CrossRefzbMATHGoogle Scholar
  28. 28.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.: \(\cal{ALC}+{T}\): a preferential extension of description logics. Fundamenta Informaticae 96(3), 341–372 (2009)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.: A non-monotonic description logic for reasoning about typicality. Artif. Intell. 195, 165–202 (2013)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.: Semantic characterization of rational closure: from propositional logic to description logics. Artif. Intell. 226, 1–33 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44, 167–207 (1990)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Lehmann, D.: Another perspective on default reasoning. Ann. Math. Artif. Intell. 15(1), 61–82 (1995)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artif. Intell. 55, 1–60 (1992)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Pensel, M., Turhan, A.-Y.: Including quantification in defeasible reasoning for the description logic \(\cal{EL} _{\bot }\). In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377, pp. 78–84. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61660-5_9CrossRefzbMATHGoogle Scholar
  35. 35.
    Quantz, J., Royer, V.: A preference semantics for defaults in terminological logics. In: Proceedings of 3rd International Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 294–305 (1992)Google Scholar
  36. 36.
    Sengupta, K., Krisnadhi, A.A., Hitzler, P.: Local closed world semantics: grounded circumscription for OWL. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 617–632. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25073-6_39CrossRefGoogle Scholar
  37. 37.
    Shoham, Y.: Reasoning About Change: Time and Causation from the Standpoint of Artificial Intelligence. MIT Press, Cambridge (1988)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CSIR-SU CAIRStellenbosch UniversityStellenboschSouth Africa
  2. 2.CRIL, Univ. Artois & CNRSLensFrance

Personalised recommendations