Skip to main content

Charged Particle Acceleration

  • Chapter
  • First Online:
Book cover Characterizing Space Plasmas

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 853 Accesses

Abstract

The momentum and energy of a charged particle obey the equations, where the momentum p = γm o v and γ = (1 − v 2c 2)−1∕2. The kinetic energy \(\mathcal E\) of the particle changes in time and energy is not conserved when an electric field is present along v. Unlike a particle moving in magnetic field only, there are no simple solutions for the velocity of the particle. Understanding the motions of charged particles in E and B fields is fundamental for space plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfvén, H., Fälthammar, C.-G.: Cosmical Electrodynamics, Fundamental Principles, 2nd edn. Oxford University Press, Oxford (1963)

    MATH  Google Scholar 

  • Cattell, C., et al.: Discovery of very large amplitude whistler-mode waves in earth’s radiation belts. Geophys. Res. Lett. 35(1), L01105 (2008)

    Article  ADS  Google Scholar 

  • Degeling, A., et al.: Modeling ULF waves in a compressed dipole magnetic field. J. Geophys. Res. 115, A10212 (2010)

    Article  ADS  Google Scholar 

  • Fennell, J., et al.: Microinjections observed by MMS FEEPS in the dusk to midnight region. Geophys. Res. Lett. 43, 6078 (2016)

    Article  ADS  Google Scholar 

  • Fermi, E.: On the origin of cosmic radiation. Phys. Rev. 15, 1165 (1949)

    MATH  Google Scholar 

  • Freeman, T., Parks, G.K.: Fermi acceleration of supra thermal solar wind oxygen ions. J. Geophys. Res. 105, 15715 (2000)

    Article  ADS  Google Scholar 

  • Halekas, J., et al.: Flows, fields, and forces in the mars-solar wind interaction. J. Geophys. Res. 122(1), 320 (2017)

    Article  Google Scholar 

  • Jackson, J.D.: Classical Electrodynamics, 2nd edn. Wiley, New York (1975)

    MATH  Google Scholar 

  • Kennel, H., Petschek, H.: Limit on stably trapped particle fluxes. J. Geophys. Res. 71, 1 (1966)

    Article  ADS  Google Scholar 

  • Kim, E.H., et al.: Localization of ultra-low frequency waves in multi-ion plasmas of the planetary magnetosphere. J. Astro. Space Sci. 32, 289 (2015)

    Article  Google Scholar 

  • Krall, N.A., Trivelpiece, A.W.: Principles of Plasma Physics. McGraw Hill Book Company, New York (1973)

    Google Scholar 

  • Landau, D.D., Liftschitz, E.M.: The Classical Theory of Fields. Addison-Wesley Publishing Company, Reading (1962)

    Google Scholar 

  • Lee, N., Parks, G.K.: Ponderomotive acceleration of ions by circularly polarized electromotive waves. Geophys. Res. Lett. 23, 327 (1996)

    Article  ADS  Google Scholar 

  • Li, X., Temerin, M.: Pondoromotive effects on ion acceleration in the auroral zone. Geophys. Res. Lett. 20, 13 (1993)

    Article  ADS  Google Scholar 

  • Lourn, P., et al.: Trapped electrons as a free energy source for the auroral kilometric radiation. J. Geophys. Res. 95, 5938 (1990)

    ADS  Google Scholar 

  • Lundin, R., Guglielmi, A.: Ponderomotive forces in cosmos. Space Sci. Rev. 127(1), 1–116 (2006)

    ADS  Google Scholar 

  • Oleksiy, A., et al.: Statistics of whistler mode waves in the outer radiation belt: cluster STAFF-SA measurements. J. Jeophys. Res. 118, 3407 (2013)

    Google Scholar 

  • Omura, Y., et al.: Theory and observation of electromagnetic ion cyclotron triggered emissions in the magnetosphere. J. Geophys. Res. 115, 5553 (2010)

    Article  Google Scholar 

  • Parks, G.K.: Physics of Space Plasmas, An Introduction, 2nd edn. Westview Press, A Member of Perseus Books Group, Boulder (2004)

    Google Scholar 

  • Takahashi, K.: ULF waves in the inner magnetosphere. In: Keiling, A., Lee, D.H., Nakariakov, V. (eds.) Low Frequency Waves in Space Plasmas. Geophysical Monograph, American Geophysical Union. Wiley, Hoboken (2016)

    Chapter  Google Scholar 

  • Takeuchi, S.: Relativistic E ×B acceleration. Phys. Rev. E 66, 037402 (2002)

    Article  ADS  Google Scholar 

  • Thorne, R.: A possible cause of dayside relativistic electron precipitation events. J. Atmos. Terres. Phys. 34, 635 (1974)

    Article  ADS  Google Scholar 

  • Zong, Q., et al.: On magnetospheric response to solar wind discontinuities. J. Atmos. Sol. Terr. Phys. 73(1), 1–4 (2011)

    Article  ADS  Google Scholar 

Additional Reading

  • Chen, F.F.: Introduction to Plasma Physics. Plenum Press, New York (1974)

    Google Scholar 

  • Friedman, Y., Semon, M.: Relativistic acceleration of charged particle in uniform and mutually perpendicular electric and magnetic fields as viewed in the laboratory frame. Phys. Rev. E 72, 026603 (2005)

    Article  ADS  Google Scholar 

  • Lee, D.H., Lysak, R., Song, Y.: Investigations of MHD wave coupling in a 3D numerical model: effects of temperature gradient. Adv. Space Res. 33, 742 (2004)

    Article  ADS  Google Scholar 

  • Northrop, T.G.: The Adiabatic Motion of Charged Particles. Interscience Publishers, New York (1963)

    MATH  Google Scholar 

  • Rankin, R., et al.: Self-consistent wave-particle interactions in dispersive scale long-period field-line-resonances. Geophys. Res. Lett. 4, L23103 (2007)

    ADS  Google Scholar 

  • Roederer, J.G.: Dynamics of Geomagnetically Trapped Radiation. Springer, New York (1970)

    Book  Google Scholar 

  • Rosser, W.G.V.: Introductory Relativity. Butterworths, London (1967)

    Google Scholar 

  • Schmidt, G.: Physics of High Temperature Plasma: An Introduction. Academic, New York (1966)

    Google Scholar 

  • Schulz, M., Lanzerotti, L.J.: Particle Diffusion in the Radiation Belts. Springer, Berlin (1974)

    Book  Google Scholar 

  • Uspensky, J.V.: Theory of Equations. McGraw Hill Book Company, Inc., New York (1948)

    Google Scholar 

  • Zhou, X.Z., et al.: Charged particle behavior in the growth and damping stages of ultralow frequency waves: theory and Van Allen probes observations. J. Geophys. Res. 112, 3254 (2016)

    Article  Google Scholar 

  • Zou, H.: Short-term variations of the inner radiation belt in the South Atlantic anomaly. J. Geophys. Res. 120, 4475 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parks, G.K. (2018). Charged Particle Acceleration. In: Characterizing Space Plasmas. Astronomy and Astrophysics Library. Springer, Cham. https://doi.org/10.1007/978-3-319-90041-4_2

Download citation

Publish with us

Policies and ethics