Skip to main content

Robust Airfoil Design in the Context of Multi-objective Optimization

Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS,volume 48)

Abstract

We apply the concept of robustness to multi-objective optimization for finding robust Pareto optimal solutions. The multi-objective optimization and robustness problem is solved by using the \(\varepsilon \)-constraint method combined with the non-intrusive polynomial chaos approach for uncertainty quantification. The resulting single-objective optimization problems are solved with a deterministic method using algorithmic differentiation for the needed derivatives. The proposed method is applied to an aerodynamic shape optimization problem for minimizing drag and maximizing lift in a steady Euler flow. We consider aleatory uncertainties in flight conditions and in the geometry separately to find robust solutions. In the case of geometrical uncertainties we apply a Karhunen-Loeve expansion to approximate the random field and make use of a dimension-adaptive quadrature based on sparse grid methods for the numerical integration in random space.

Keywords

  • Airfoil
  • Robust Pareto-optimal Solutions
  • Sparse Grid
  • Aerodynamic Shape Optimization Problems
  • Single Objective Optimization Problem

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-89988-6_23
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-89988-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Albring, T., Zhou, B.Y., Gauger, N.R., Sagebaum, M.: An aerodynamic design framework based on algorithmic differentiation. ERCOFTAC Bull 102, 10–16 (2015)

    Google Scholar 

  2. Bosse, T., Gauger, N.R., Griewank, A., Günther, S., Schulz, V.: One-shot approaches to design optimzation. Int. Ser. Num. Math. 165, 43–66 (2014)

    CrossRef  Google Scholar 

  3. Deb, K., Gupta, H.: Searching for robust pareto-optimal solutions in multi-objective optimization. Lect. Notes Comput. Sci. 3410, 150–164 (2005)

    CrossRef  Google Scholar 

  4. Gerstner, T., Griebel, M.: Dimension-adaptive tensor-product quadrature. Computing 71(1), 65–87 (2003)

    MathSciNet  CrossRef  Google Scholar 

  5. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Siam (2008)

    Google Scholar 

  6. Gunawan, S., Azarm, S.: Multi-objective robust optimization using a sensitivity region concept. Struct. Multidiscip. Optim. 29(1), 50–60 (2005)

    CrossRef  Google Scholar 

  7. Karhunen, K.: Zur Sprektraltheorie stochastischer Prozesse. Suomalaisen Tiedeakatemian toimituksia. Math. Phys. Ser. A: 1 34 (1946)

    Google Scholar 

  8. Kusch, L., Gauger, N., Spiller, M.: Efficient calculation of pareto-optimal points for shape optimization. In: Evolutionary and Deterministic Methods for Design, Optimization, and Control with Applications to Industrial and Societal Problems - EUROGEN 2013 (ISBN 978-84-617-2141-2), Universidad de Las Palmas de Gran Canaria, Spain (2014)

    Google Scholar 

  9. Loéve, M.: Probability Theory. Springer, New York (1978)

    MATH  Google Scholar 

  10. Marglin, S.A.: Public Investment Criteria. Allen & Unwin London (1967)

    Google Scholar 

  11. Miettinen, K.: Nonlinear multiobjective optimization. In: International Series in Operations Research & Management Science, vol. 12. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  12. Molina-Cristobal, A., Parks, G., Clarkson, P.: Finding robust solutions to multi-objective optimisation problems using polynomial chaos. In: Proceedings of the 6th ASMO UK/ISSMO Conference on Engineering Design Optimization, Citeseer (2006)

    Google Scholar 

  13. Palacios, F., Colonno, M.R., Aranake, A.C., Campos, A., Copeland, S.R., Economon, T.D., Lonkar, A.K., Lukaczyk, T.W., Taylor, T.W., Alonso, J.J.: Stanford university unstructured (su2): an open-source integrated computational environment for multi-physics simulation and design. AIAA Pap. 287, 1–60 (2013)

    Google Scholar 

  14. Schillings, C., Schmidt, S., Schulz, V.: Efficient shape optimization for certain and uncertain aerodynamic design. Comput. Fluids 46(1), 78–87 (2011)

    MathSciNet  CrossRef  Google Scholar 

  15. Schulz, V., Schillings, C.: Problem formulations and treatment of uncertainties in aerodynamic design. AIAA J. 47(3), 646–654 (2009)

    CrossRef  Google Scholar 

  16. Teich, J.: Pareto-front exploration with uncertain objectives. In: Evolutionary Multi-criterion Optimization, pp. 314–328. Springer, Berlin, Heidelberg (2001)

    Google Scholar 

  17. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    MathSciNet  CrossRef  Google Scholar 

Download references

Acknowledgements

We would like to thank our colleague Tim Albring from TU Kaiserslautern for assistance with SU2, and Claudia Schillings from University of Warwick for providing the code and the support for the dimension-adaptive quadrature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Kusch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kusch, L., Gauger, N.R. (2019). Robust Airfoil Design in the Context of Multi-objective Optimization. In: Minisci, E., Vasile, M., Periaux, J., Gauger, N., Giannakoglou, K., Quagliarella, D. (eds) Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences. Computational Methods in Applied Sciences, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-319-89988-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89988-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89986-2

  • Online ISBN: 978-3-319-89988-6

  • eBook Packages: EngineeringEngineering (R0)