Advertisement

Robust Airfoil Design in the Context of Multi-objective Optimization

  • Lisa KuschEmail author
  • Nicolas R. Gauger
Chapter
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 48)

Abstract

We apply the concept of robustness to multi-objective optimization for finding robust Pareto optimal solutions. The multi-objective optimization and robustness problem is solved by using the \(\varepsilon \)-constraint method combined with the non-intrusive polynomial chaos approach for uncertainty quantification. The resulting single-objective optimization problems are solved with a deterministic method using algorithmic differentiation for the needed derivatives. The proposed method is applied to an aerodynamic shape optimization problem for minimizing drag and maximizing lift in a steady Euler flow. We consider aleatory uncertainties in flight conditions and in the geometry separately to find robust solutions. In the case of geometrical uncertainties we apply a Karhunen-Loeve expansion to approximate the random field and make use of a dimension-adaptive quadrature based on sparse grid methods for the numerical integration in random space.

Notes

Acknowledgements

We would like to thank our colleague Tim Albring from TU Kaiserslautern for assistance with SU2, and Claudia Schillings from University of Warwick for providing the code and the support for the dimension-adaptive quadrature.

References

  1. 1.
    Albring, T., Zhou, B.Y., Gauger, N.R., Sagebaum, M.: An aerodynamic design framework based on algorithmic differentiation. ERCOFTAC Bull 102, 10–16 (2015)Google Scholar
  2. 2.
    Bosse, T., Gauger, N.R., Griewank, A., Günther, S., Schulz, V.: One-shot approaches to design optimzation. Int. Ser. Num. Math. 165, 43–66 (2014)CrossRefGoogle Scholar
  3. 3.
    Deb, K., Gupta, H.: Searching for robust pareto-optimal solutions in multi-objective optimization. Lect. Notes Comput. Sci. 3410, 150–164 (2005)CrossRefGoogle Scholar
  4. 4.
    Gerstner, T., Griebel, M.: Dimension-adaptive tensor-product quadrature. Computing 71(1), 65–87 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Siam (2008)Google Scholar
  6. 6.
    Gunawan, S., Azarm, S.: Multi-objective robust optimization using a sensitivity region concept. Struct. Multidiscip. Optim. 29(1), 50–60 (2005)CrossRefGoogle Scholar
  7. 7.
    Karhunen, K.: Zur Sprektraltheorie stochastischer Prozesse. Suomalaisen Tiedeakatemian toimituksia. Math. Phys. Ser. A: 1 34 (1946)Google Scholar
  8. 8.
    Kusch, L., Gauger, N., Spiller, M.: Efficient calculation of pareto-optimal points for shape optimization. In: Evolutionary and Deterministic Methods for Design, Optimization, and Control with Applications to Industrial and Societal Problems - EUROGEN 2013 (ISBN 978-84-617-2141-2), Universidad de Las Palmas de Gran Canaria, Spain (2014)Google Scholar
  9. 9.
    Loéve, M.: Probability Theory. Springer, New York (1978)zbMATHGoogle Scholar
  10. 10.
    Marglin, S.A.: Public Investment Criteria. Allen & Unwin London (1967)Google Scholar
  11. 11.
    Miettinen, K.: Nonlinear multiobjective optimization. In: International Series in Operations Research & Management Science, vol. 12. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  12. 12.
    Molina-Cristobal, A., Parks, G., Clarkson, P.: Finding robust solutions to multi-objective optimisation problems using polynomial chaos. In: Proceedings of the 6th ASMO UK/ISSMO Conference on Engineering Design Optimization, Citeseer (2006)Google Scholar
  13. 13.
    Palacios, F., Colonno, M.R., Aranake, A.C., Campos, A., Copeland, S.R., Economon, T.D., Lonkar, A.K., Lukaczyk, T.W., Taylor, T.W., Alonso, J.J.: Stanford university unstructured (su2): an open-source integrated computational environment for multi-physics simulation and design. AIAA Pap. 287, 1–60 (2013)Google Scholar
  14. 14.
    Schillings, C., Schmidt, S., Schulz, V.: Efficient shape optimization for certain and uncertain aerodynamic design. Comput. Fluids 46(1), 78–87 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Schulz, V., Schillings, C.: Problem formulations and treatment of uncertainties in aerodynamic design. AIAA J. 47(3), 646–654 (2009)CrossRefGoogle Scholar
  16. 16.
    Teich, J.: Pareto-front exploration with uncertain objectives. In: Evolutionary Multi-criterion Optimization, pp. 314–328. Springer, Berlin, Heidelberg (2001)Google Scholar
  17. 17.
    Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2019

Authors and Affiliations

  1. 1.Chair for Scientific ComputingTU KaiserslauternKaiserslauternGermany

Personalised recommendations