Photochemistry pp 179-213 | Cite as

Charge and Energy Transfer Processes

  • Maurizio Persico
  • Giovanni Granucci
Part of the Theoretical Chemistry and Computational Modelling book series (TCCM)


In this chapter we shall present the peculiar features of charge and excitation energy transfer processes (CT and ET) that are of basic importance in photosynthesis, photovoltaics, and other areas of biochemistry and technology. The migration of charge or excitation energy between distinct chromophores implies a dramatic change in the electronic wavefunction, so the general nonadiabatic theory we have already discussed also applies to these processes. However, some peculiar features distinguish charge and energy transfer from other nonadiabatic processes. If the two chromophores are placed in two molecules free to move in gas or liquid phase, the transition can only take place during a collision or encounter, so the kinetics of bimolecular processes plays an essential role. However, just because their interaction is a basic requirement for the process to occur, in structured biological or artificial photosystems the single units are fixed at suitable relative positions and orientations. In typical situations, such arrangements also determine easily discernable spectral features. Whenever the interaction between the involved chromophores is not too large, the initial and final electronic states of the CT or ET process constitute a physically sound diabatic representation, which allows to analyze theoretically the main features of the dynamics.


Charge transfer Energy transfer Quenching Sensitization Exciton coupling 

Supplementary material


  1. 1.
    Subotnik, J.E., Cave, R.J., Steele, R.P., Shenvi, N.: The initial and final states of electron and energy transfer processes: diabatization as motivated by system-solvent interactions. J. Chem. Phys. 130, 234102/1–14 (2009)CrossRefGoogle Scholar
  2. 2.
    Voityuk, A.A.: Fragment transition density method to calculate electronic coupling for excitation energy transfer. J. Chem. Phys. 140, 244117/1–7 (2014)CrossRefGoogle Scholar
  3. 3.
    Voityuk, A.A.: Interaction of dark excited states. comparison of computational approaches. J. Phys. Chem. B 119, 7417–7421 (2015)CrossRefGoogle Scholar
  4. 4.
    Curutchet, C., Mennucci, B.: Quantum chemical studies of light harvesting. Chem. Rev. 117, 294–343 (2017)CrossRefGoogle Scholar
  5. 5.
    Favero, L., Granucci, G., Persico, M.: Dynamics of acetone photodissociation: a surface hopping study. Phys. Chem. Chem. Phys. 15, 20651–20661 (2013)CrossRefGoogle Scholar
  6. 6.
    Rohatgi-Mukherjee, K.K.: Fundamentals of Photochemistry. New Age International, New Delhi (2017)Google Scholar
  7. 7.
    Raišys, S., Kazlauskas, K., Juršiėas, S., Simon, Y.C.: The role of triplet exciton diffusion in light-upconverting polymer glasses. ACS Appl. Mater. Interfaces 8, 15732–15740 (2016)CrossRefGoogle Scholar
  8. 8.
    DeVries, P.L., Chang, C., George, T.F., Laskowski, B., Stallcop, J.R.: Computational study of alkali-metal - noble-gas collisions in the presence of nonresonant lasers: Na + Xe + \(\hbar \omega _1\) + \(\hbar \omega _2\) system. Phys. Rev. 22, 545–550 (1980)Google Scholar
  9. 9.
    Angeli, C., Persico, M.: Quasi-diabatic and adiabatic states and potential energy curves for Na-Cd collisions and excimer formation. Chem. Phys. 204, 57–64 (1996)CrossRefGoogle Scholar
  10. 10.
    Reiland, W., Tittes, H.-U., Hertel, I.V., Bonačić-Koutecký, V., Persico, M.: Stereochemical effects in the quenching of Na\(^*\;(3\,^2P)\) by CO: crossed beam experiment and ab initio CI potential energy surfaces. J. Chem. Phys. 77, 1908–1920 (1982)Google Scholar
  11. 11.
    McWeeny, R.: Methods of Molecular Quantum Mechanics. Academic Press, London (1992)Google Scholar
  12. 12.
    Smith, M.B., Michl, J.: Singlet fission. Chem. Rev. 110, 6891–6936 (2010)CrossRefGoogle Scholar
  13. 13.
    Dexter, D.L.: A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953)CrossRefGoogle Scholar
  14. 14.
    Förster, T.: Transfer mechanisms of electronic excitation. Discuss. Faraday Soc. 27, 7–17 (1959)CrossRefGoogle Scholar
  15. 15.
    Bottcher, C.J.: Theory of electric polarization. Elsevier, Amsterdam (1973)Google Scholar
  16. 16.
    Govorov, A., Martínez, P.L.H., Demir, H.V.: Understanding and Modeling Förster-Type Resonance Energy Transfer (FRET). Springer, Singapore (2016)CrossRefGoogle Scholar
  17. 17.
    Medintz, I., Hildebrandt, N. (eds.): Förster Resonance Energy Transfer (FRET). From Theory to Applications. Wiley, Weinheim (2014)Google Scholar
  18. 18.
    Romstad, D., Granucci, G., Persico, M.: Nonadiabatic transitions and interference in photodissociation dynamics. Chem. Phys. 219, 21–30 (1997)CrossRefGoogle Scholar
  19. 19.
    Granucci, G., Mazzoni, M., Persico, M., Toniolo, A.: A computational study of the excited states of bilirubin IX. Phys. Chem. Chem. Phys. 7, 2594–2598 (2005)CrossRefGoogle Scholar
  20. 20.
    Newton, M.D.: The role of solvation in electron transfer: theoretical and computational aspects. In: Cammi, R., Mennucci, B. (eds.) Continuum Solvation Models in Chemical Physics: From Theory to Applications, pp. 389–413. Wiley, Chichester (2007)Google Scholar
  21. 21.
    Marcus, R.A.: On the theory of electron transfer reactions VI. unified treatment for homogeneous and electrode reactions. J. Chem. Phys. 43, 679–701 (1965)CrossRefGoogle Scholar
  22. 22.
    Cave, R.J., Edwards, S.T., Kouzelos, J.A., Newton, M.D.: Reduced electronic spaces for modeling donor/acceptor interactions. J. Phys. Chem. B 114, 14631–14641 (2010)CrossRefGoogle Scholar
  23. 23.
    Cave, R.J., Newton, M.D.: Multistate treatments of the electronic coupling in donor-bridge-acceptor systems: insights and caveats from a simple model. J. Phys. Chem. A 118, 7221–7234 (2014)CrossRefGoogle Scholar
  24. 24.
    Wibowo, M., Broer, R., Havenith, R.W.A.: A rigorous nonorthogonal configuration interaction approach for the calculation of electronic couplings between diabatic states applied to singlet fission. Comput. Theor. Chem. 1116, 190–194 (2017)CrossRefGoogle Scholar
  25. 25.
    Plasser, F., Granucci, G., Pittner, J., Barbatti, M., Persico, M., Lischka, H.: Surface hopping dynamics using a locally diabatic formalism: charge transfer in the ethylene dimer cation and excited state dynamics in the 2-pyridone dimer. J. Chem. Phys. 137, 22A514/1–13 (2012)CrossRefGoogle Scholar
  26. 26.
    Burghardt, I., Hynes, J.T.: Excited-state charge transfer at a conical intersection: effects of an environment. J. Phys. Chem. A 110, 11411–11423 (2006)CrossRefGoogle Scholar
  27. 27.
    Worth, G.A., Meyer, H.-D., Köppel, H., Cederbaum, L.S., Burghardt, I.: Using the MCTDH wavepacket propagation method to describe multimode non-adiabatic dynamics. Int. Rev. Phys. Chem. 27, 569–606 (2008)CrossRefGoogle Scholar
  28. 28.
    Malhado, J.P., Spezia, R., Hynes, J.T.: Dynamical friction effects on the photoisomerization of a model protonated Schiff base in solution. J. Phys. Chem. A 115, 3720–3735 (2011)CrossRefGoogle Scholar
  29. 29.
    Cimiraglia, R., Malrieu, J.-P., Persico, M., Spiegelmann, F.: Quasi diabatic states and dynamical couplings from ab initio CI calculations: a new proposal. J. Phys. B 18, 3073 (1985)CrossRefGoogle Scholar
  30. 30.
    Cattaneo, P., Persico, M.: Ab initio determination of quasi-diabatic states for multiple reaction pathways. Chem. Phys. 214, 49 (1997)CrossRefGoogle Scholar
  31. 31.
    Foster, J.M., Boys, S.F.: Canonical configurational interaction procedure. Rev. Mod. Phys. 32, 300 (1960)CrossRefGoogle Scholar
  32. 32.
    Edmiston, C., Ruedenberg, K.: Localized atomic and molecular orbitals. Rev. Mod. Phys. 35, 457 (1963)CrossRefGoogle Scholar
  33. 33.
    Magnasco, V., Perico, A.: Uniform localization of atomic and molecular orbitals I. J. Chem. Phys. 47, 971–981 (1967)CrossRefGoogle Scholar
  34. 34.
    Magnasco, A., Perico, V.: Uniform localization of atomic and molecular orbitals II. J. Chem. Phys. 48, 800–808 (1968)CrossRefGoogle Scholar
  35. 35.
    Pipek, J., Mezey, P.G.: A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions. J. Chem. Phys. 90, 4916–4926 (1989)CrossRefGoogle Scholar
  36. 36.
    Høyvik, I.-M., Jansik, B., Jørgensen, P.: Pipek-Mezey localization of occupied and virtual orbitals. J. Comp. Chem. 34, 1456–1462 (2013)CrossRefGoogle Scholar
  37. 37.
    Lehtola, S., Jónsson, H.: Pipek-Mezey orbital localization using various partial charge estimates. J. Chem. Theory Comput. 10, 642–649 (2014)CrossRefGoogle Scholar
  38. 38.
    Zhang, C., Li, S.: An efficient localization procedure for large systems using a sequential transformation strategy. J. Chem. Phys. 141, 244106/1–8 (2014)CrossRefGoogle Scholar
  39. 39.
    Heßelmann, A.: Local molecular orbitals from a projection onto localized centers. J. Chem. Theory Comput. 12, 2720–2741 (2016)CrossRefGoogle Scholar
  40. 40.
    de Silva, P., Giebułtowski, M., Korchowiec, J.: Fast orbital localization scheme in molecular fragments resolution. Phys. Chem. Chem. Phys. 14, 546–552 (2012)CrossRefGoogle Scholar
  41. 41.
    Zalesskaya, G.A., Sambor, E.G., Bely, N.N.: Photoinduced gas-phase electron transfer reactions. J. Fluor. 14, 173–180 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Industrial ChemistryUniversity of PisaPisaItaly

Personalised recommendations