Photochemistry pp 141-177 | Cite as

Fast Nonadiabatic Dynamics

  • Maurizio Persico
  • Giovanni Granucci
Part of the Theoretical Chemistry and Computational Modelling book series (TCCM)


In this chapter we present the fast dynamics of a molecular system in regions (avoided crossings, conical intersections) where the Born–Oppenheimer approximation breaks down because the electronic and the nuclear motion are strongly coupled. When a nuclear wavepacket reaches a region where the PESs are close to each other, the nonadiabatic transitions are far from being negligible, and time-dependent perturbation theory cannot be applied. We will show that, in spite of the strong interplay between electronic and nuclear motion, interesting information can be obtained from an approximated mixed quantum/classical model, which leads to the celebrated Landau–Zener formula. Moreover, the main features of conical intersections will be described in some detail.


Nonadiabatic dynamics Avoided crossings Landau-Zener Conical intersections Berry’s phase Surface hopping 


  1. 1.
    Persico, M.: Electronic diabatic states: definition, computation and application. In: Schleyer, R., Allinger, N. L., Clark, T., Gasteiger, J., Kollman, P.A., Schaefer III, H.F., Schreiner, P.R. (eds.) The Encyclopedia of Computational Chemistry, vol. 2, pp. 852–860. Wiley, Chichester (1998)Google Scholar
  2. 2.
    Cederbaum, L.S.: Born-Oppenheimer approximation and beyond. In: Domcke, W., Yarkony, D.R., Köppel, H. (eds.) Conical Intersections. Electronic Structure, Dynamics & Spectroscopy. World Scientific, Singapore (2004)Google Scholar
  3. 3.
    Köppel, H.: Diabatic representation: methods for the construction of diabatic electronic states. In: Domcke, W., Yarkony, D. R., Köppel, H. (eds.) Conical Intersections. Electronic Structure, Dynamics & Spectroscopy. World Scientific, Singapore (2004)Google Scholar
  4. 4.
    Mead, C.A., Truhlar, D.G.: Conditions for the definition of a strictly diabatic electronic basis for molecular systems. J. Chem. Phys. 77, 6090–6098 (1982)CrossRefGoogle Scholar
  5. 5.
    Eisfeld, W., Vieuxmaire, O., Viel, A.: Full dimensional diabatic potential energy surfaces including dissociation: the \({}^2E^{\prime \prime }\) state of NO\(_3\). J. Chem. Phys. 140, 224109 (2014)CrossRefGoogle Scholar
  6. 6.
    Nikitin, E.E.: Nonadiabatic transitions: what we learned from old masters and how much we owe them. Annu. Rev. Phys. Chem. 50, 1–21 (1999)CrossRefGoogle Scholar
  7. 7.
    Nakamura, H.: Nonadiabatic Transition. Concepts, Basic Theories and Applications. World Scientific, Singapore (2012)CrossRefGoogle Scholar
  8. 8.
    Yarkony, D.R.: Conical intersections: their description and consequences. In: Domcke, W., Yarkony, D. R., Köppel, H. (eds.) Conical Intersections. Electronic Structure, Dynamics & Spectroscopy. World Scientific, Singapore (2004)Google Scholar
  9. 9.
    Granucci, G., Persico, M., Spighi, G.: Surface hopping trajectory simulations with spin-orbit and dynamical couplings. J. Chem. Phys. 137, 22A501/1-9 (2012)CrossRefGoogle Scholar
  10. 10.
    Sakurai, J.J.: Modern Quantum Mechanics. Addison-Wesley, Reading (1994)Google Scholar
  11. 11.
    Mead, C.A.: The geometric phase in molecular systems. Rev. Mod. Phys. 61, 51–85 (1984)Google Scholar
  12. 12.
    Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984)CrossRefGoogle Scholar
  13. 13.
    Child, M.S.: Early perspectives on geometric phase. Adv. Chem. Phys. 124, 1–38 (2002)Google Scholar
  14. 14.
    Longuet-Higgins, H.C.: Some recent developments in the theory of molecular energy levels. Adv. Spectrosc. 2, 429–472 (1961)Google Scholar
  15. 15.
    Jahn, H.A., Teller, E.: Stability of polyatomic molecules in degenerate electronic states. I–Orbital degeneracy. Proc. R. Soc. Lond. A 161, 220-235 (1937)Google Scholar
  16. 16.
    Merzbacher, E.: Quantum Mechanics. Wiley, New York (1998)Google Scholar
  17. 17.
    Persico, M., Granucci, G.: An overview of nonadiabatic dynamics simulations methods, with focus on the direct approach versus the fitting of potential energy surfaces. Theor. Chem. Acc. 133, 1526 (2014)CrossRefGoogle Scholar
  18. 18.
    Tavernelli, I.: Nonadiabatic molecular dynamics simulations: synergies between theory and experiments. Acc. Chem. Res. 48, 792–800 (2015)CrossRefGoogle Scholar
  19. 19.
    Meyer, H.D., Gatti, F., Worth, G.A.: Multidimensional Quantum Dynamics: MCTDH Theory and Applications. Wiley-VCH, Weinheim (2009)CrossRefGoogle Scholar
  20. 20.
    Raab, A.: On the Dirac-Frenkel/McLachlan variational principle. Chem. Phys. Lett. 319, 674–678 (2000)CrossRefGoogle Scholar
  21. 21.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I: Functional Analysis. Academic Press, San Diego (1980)Google Scholar
  22. 22.
    Lasorne, B., Worth, G.A., Robb, M.A.: Excited-state dynamics. WIREs Comput. Mol. Sci. 1, 460–475 (2011)CrossRefGoogle Scholar
  23. 23.
    Römer, S., Ruckenbauer, M., Burghardt, I.: Gaussian-based multiconfiguration time-dependent Hartree: a two-layer approach. I. Theory. J. Chem. Phys. 138, 064106 (2013)CrossRefGoogle Scholar
  24. 24.
    Richings, G.W., Polyak, I., Spinlove, K.E., Worth, G.A., Burghardt, I., Lasorne, B.: Quantum dynamics simulations using Gaussian wavepackets: the vMCG method. Int. Rev. Phys. Chem. 34, 269–308 (2015)CrossRefGoogle Scholar
  25. 25.
    Ben-Nun, M., Quenneville, J., Martínez, T.J.: Ab initio multiple spawning: photochemistry from first principles quantum molecular dynamics. J. Phys. Chem. A 104, 5161–5175 (2000)CrossRefGoogle Scholar
  26. 26.
    Wang, L., Akimov, A., Prezhdo, O.V.: Recent progress in surface hopping: 2011–2015. J. Chem. Phys. Lett. 7, 2100–2112 (2016)CrossRefGoogle Scholar
  27. 27.
    Subotnik, J.E., Jain, A., Landry, B., Petit, A., Ouyang, W., Bellonzi, N.: Understanding the surface hopping view of electronic transitions and decoherence. Annu. Rev. Phys. Chem. 67, 387–417 (2016)CrossRefGoogle Scholar
  28. 28.
    Tully, J.C.: Molecular dynamics with electronic transitions. J. Chem. Phys. 93, 1061–1071 (1990)CrossRefGoogle Scholar
  29. 29.
    Granucci, G., Persico, M., Zoccante, A.: Including quantum decoherence in surface hopping. J. Chem. Phys. 133, 134111/1-9 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Industrial ChemistryUniversity of PisaPisaItaly

Personalised recommendations