Skip to main content

Using Minimum Path Cover to Boost Dynamic Programming on DAGs: Co-linear Chaining Extended

  • Conference paper
  • First Online:
Research in Computational Molecular Biology (RECOMB 2018)

Abstract

Aligning sequencing reads on graph representations of genomes is an important ingredient of pan-genomics. Such approaches typically find a set of local anchors that indicate plausible matches between substrings of a read to subpaths of the graph. These anchor matches are then combined to form a (semi-local) alignment of the complete read on a subpath. Co-linear chaining is an algorithmically rigorous approach to combine the anchors. It is a well-known approach for the case of two sequences as inputs. Here we extend the approach so that one of the inputs can be a directed acyclic graph (DAGs), e.g. a splicing graph in transcriptomics or a variant graph in pan-genomics.

This extension to DAGs turns out to have a tight connection to the minimum path cover problem, asking us to find a minimum-cardinality set of paths that cover all the nodes of a DAG. We study the case when the size k of a minimum path cover is small, which is often the case in practice. First, we propose an algorithm for finding a minimum path cover of a DAG (VE) in \(O(k|E|\log |V|)\) time, improving all known time-bounds when k is small and the DAG is not too dense. Second, we introduce a general technique for extending dynamic programming (DP) algorithms from sequences to DAGs. This is enabled by our minimum path cover algorithm, and works by mimicking the DP algorithm for sequences on each path of the minimum path cover. This technique generally produces algorithms that are slower than their counterparts on sequences only by a factor k. Our technique can be applied, for example, to the classical longest increasing subsequence and longest common subsequence problems, extended to labeled DAGs. Finally, we apply this technique to the co-linear chaining problem, which is a generalization of both of these two problems. We also implemented the new co-linear chaining approach. Experiments on splicing graphs show that the new method is efficient also in practice.

A. Tomescu and V. Mäkinen—Shared last author contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abouelhoda, M.: A chaining algorithm for mapping cdna sequences to multiple genomic sequences. In: Ziviani, N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726, pp. 1–13. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75530-2_1

    Chapter  Google Scholar 

  2. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall Inc, Upper Saddle River (1993)

    MATH  Google Scholar 

  3. Amir, A., Lewenstein, M., Lewenstein, N.: Pattern matching in hypertext. J. Algorithms 35(1), 82–99 (2000)

    Article  MathSciNet  Google Scholar 

  4. Belazzougui, D.: Linear time construction of compressed text indices in compact space. In: Proceedings of the Symposium on Theory of Computing STOC 2014, pp. 148–193. ACM (2014)

    Google Scholar 

  5. Belazzougui, D., Cunial, F., Kärkkäinen, J., Mäkinen, V.: Versatile succinct representations of the bidirectional Burrows-wheeler transform. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 133–144. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40450-4_12

    Chapter  Google Scholar 

  6. Chen, Y., Chen, Y.: An efficient algorithm for answering graph reachability queries. In: 2008 IEEE 24th International Conference on Data Engineering, pp. 893–902, April 2008

    Google Scholar 

  7. Chen, Y., Chen, Y.: On the graph decomposition. In: 2014 IEEE Fourth International Conference on Big Data and Cloud Computing, pp. 777–784, Dec 2014

    Google Scholar 

  8. Church, D.M., Schneider, V.A., Steinberg, K.M., Schatz, M.C., Quinlan, A.R., Chin, C.-S., Kitts, P.A., Aken, B., Marth, G.T., Hoffman, M.M., et al.: Extending reference assembly models. Genome Biol. 16(1), 13 (2015)

    Article  Google Scholar 

  9. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries via 2-hop labels. SIAM J. Comput. 32(5), 1338–1355 (2003)

    Article  MathSciNet  Google Scholar 

  10. Eppstein, D., Galil, Z., Giancarlo, R., Italiano, G.F.: Sparse dynamic programming I: linear cost functions. J. ACM 39(3), 519–545 (1992)

    Article  MathSciNet  Google Scholar 

  11. Felsner, S., Raghavan, V., Spinrad, J.: Recognition algorithms for orders of small width and graphs of small Dilworth number. Order 20(4), 351–364 (2003)

    Article  MathSciNet  Google Scholar 

  12. Fulkerson, D.R.: Note on Dilworth’s decomposition theorem for partially ordered sets. Proc. Am. Math. Soc. 7(4), 701–702 (1956)

    MathSciNet  MATH  Google Scholar 

  13. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry problems. In: Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing, STOC 1984, pp. 135–143. ACM, New York (1984)

    Google Scholar 

  14. Haussler, D., Smuga-Otto, M., Paten, B., Novak, A.M., Nikitin, S., Zueva, M., Miagkov, D.: A flow procedure for the linearization of genome sequence graphs. In: Sahinalp, S.C. (ed.) RECOMB 2017. LNCS, vol. 10229, pp. 34–49. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56970-3_3

    Chapter  Google Scholar 

  15. Heber, S., Alekseyev, M., Sze, S.-H., Tang, H., Pevzner, P.A.: Splicing graphs and EST assembly problem. Bioinformatics 18(Suppl. 1), S181–S188 (2002)

    Article  Google Scholar 

  16. Hopcroft, J.E., Karp, R.M.: An \(n^{5/2}\) algorithm for maximum matchings in Bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)

    Article  MathSciNet  Google Scholar 

  17. Jagadish, H.V.: A compression technique to materialize transitive closure. ACM Trans. Database Syst. 15(4), 558–598 (1990)

    Article  MathSciNet  Google Scholar 

  18. Kuosmanen, A., Norri, T., Mäkinen, V.: Evaluating approaches to find exon chains based on long reads. Brief. Bioinform. bbw137 (2017)

    Google Scholar 

  19. Kuosmanen, A., Paavilainen, T., Gagie, T., Chikhi, R., Tomescu, A.I., Mäkinen, V.: Using minimum path cover to boost dynamic programming on dags: co-linear chaining extended. CoRR, abs/1705.08754 (2018)

    Google Scholar 

  20. Limasset, A., Cazaux, B., Rivals, E., Peterlongo, P.: Read mapping on de Bruijn graphs. BMC Bioinform. 17(1), 237 (2016)

    Article  Google Scholar 

  21. Mäkinen, V., Belazzougui, D., Cunial, F., Tomescu, A.I.: Genome-Scale Algorithm Design. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  22. Mäkinen, V., Salmela, L., Ylinen, J.: Normalized N50 assembly metric using gap-restricted co-linear chaining. BMC Bioinform. 13, 255 (2012)

    Article  Google Scholar 

  23. Myers, G., Miller, W.: Chaining multiple-alignment fragments in sub-quadratic time. In: Clarkson, K.L. (ed.) Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, 22–24 January 1995, pp. 38–47. ACM/SIAM, San Francisco (1995)

    Google Scholar 

  24. Navarro, G.: Improved approximate pattern matching on hypertext. Theor. Comput. Sci. 237(1–2), 455–463 (2000)

    Article  MathSciNet  Google Scholar 

  25. Novak, A.M., Garrison, E., Paten, B.: A graph extension of the positional Burrows-Wheeler transform and its applications. In: Frith, M., Storm Pedersen, C.N. (eds.) WABI 2016. LNCS, vol. 9838, pp. 246–256. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43681-4_20

    Chapter  Google Scholar 

  26. Ntafos, S.C., Hakimi, S.L.: On path cover problems in digraphs and applications to program testing. IEEE Trans. Softw. Eng. 5(5), 520–529 (1979)

    Article  MathSciNet  Google Scholar 

  27. Orlin, J.B.: Max flows in \(O(nm)\) time, or better. In: Proceedings of the 45th Annual ACM Symposium on the Theory of Computing, STOC 2013, pp. 765–774. ACM, New York (2013)

    Google Scholar 

  28. Park, K., Kim, D.K.: String matching in hypertext. In: Galil, Z., Ukkonen, E. (eds.) CPM 1995. LNCS, vol. 937, pp. 318–329. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60044-2_51

    Chapter  Google Scholar 

  29. Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., Kingsford, C.: Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14(4), 417–419 (2017)

    Article  Google Scholar 

  30. Rizzi, R., Tomescu, A.I., Mäkinen, V.: On the complexity of minimum path cover with subpath constraints for multi-assembly. BMC Bioinform. 15(S–9), S5 (2014)

    Article  Google Scholar 

  31. Schnorr, C.-P.: An algorithm for transitive closure with linear expected time. SIAM J. Comput. 7(2), 127–133 (1978)

    Article  MathSciNet  Google Scholar 

  32. Shibuya, T., Kurochkin, I.: Match chaining algorithms for cDNA mapping. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS, vol. 2812, pp. 462–475. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39763-2_33

    Chapter  Google Scholar 

  33. Sirén, J.: Indexing variation graphs. In: 2017 Proceedings of the Ninteenth Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 13–27. SIAM (2017)

    Google Scholar 

  34. Sirén, J., Välimäki, N., Mäkinen, V.: Indexing graphs for path queries with applications in genome research. IEEE/ACM Trans. Comput. Biol. Bioinf. 11(2), 375–388 (2014)

    Article  Google Scholar 

  35. Tomescu, A.I., Gagie, T., Popa, A., Rizzi, R., Kuosmanen, A., Mäkinen, V.: Explaining a weighted dag with few paths for solving genome-guided multi-assembly. IEEE/ACM Trans. Comput. Biol. Bioinf. 12(6), 1345–1354 (2015)

    Article  Google Scholar 

  36. Uricaru, R., Michotey, C., Chiapello, H., Rivals, E.: YOC, a new strategy for pairwise alignment of collinear genomes. BMC Bioinform. 16(1), 111 (2015)

    Article  Google Scholar 

  37. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  38. Vyverman, M., De Baets, B., Fack, V., Dawyndt, P.: A long fragment aligner called ALFALFA. BMC Bioinform. 16(1), 159 (2015)

    Article  Google Scholar 

  39. Vyverman, M., De Smedt, D., Lin, Y.-C., Sterck, L., De Baets, B., Fack, V., Dawyndt, P.: Fast and Accurate cDNA mapping and splice site identification. In: Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms (BIOSTEC 2014), pp. 233–238 (2014)

    Google Scholar 

  40. Wandelt, S., Leser, U.: RRCA: ultra-fast multiple in-species genome alignments. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) AlCoB 2014. LNCS, vol. 8542, pp. 247–261. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07953-0_20

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for comments that improved the presentation of this paper. We thank Gonzalo Navarro for pointing out the connection to pattern matching on hypertexts. This work was funded in part by the Academy of Finland (grant 274977 to AIT and grants 284598 and 309048 to AK and to VM), and by Futurice Oy (to TP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veli Mäkinen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuosmanen, A., Paavilainen, T., Gagie, T., Chikhi, R., Tomescu, A., Mäkinen, V. (2018). Using Minimum Path Cover to Boost Dynamic Programming on DAGs: Co-linear Chaining Extended. In: Raphael, B. (eds) Research in Computational Molecular Biology. RECOMB 2018. Lecture Notes in Computer Science(), vol 10812. Springer, Cham. https://doi.org/10.1007/978-3-319-89929-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89929-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89928-2

  • Online ISBN: 978-3-319-89929-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics