Advertisement

Loss-Function Learning for Digital Tissue Deconvolution

  • Franziska Görtler
  • Stefan Solbrig
  • Tilo Wettig
  • Peter J. Oefner
  • Rainer Spang
  • Michael Altenbuchinger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10812)

Abstract

The gene expression profile of a tissue averages the expression profiles of all cells in this tissue. Digital tissue deconvolution (DTD) addresses the following inverse problem: Given the expression profile y of a tissue, what is the cellular composition c of that tissue? If X is a matrix whose columns are reference profiles of individual cell types, the composition c can be computed by minimizing \(\mathcal {L}(y-Xc)\) for a given loss function \(\mathcal {L}\). Current methods use predefined all-purpose loss functions. They successfully quantify the dominating cells of a tissue, while often falling short in detecting small cell populations.

Here we use training data to learn the loss function \(\mathcal {L}\) along with the composition c. This allows us to adapt to application-specific requirements such as focusing on small cell populations or distinguishing phenotypically similar cell populations. Our method quantifies large cell fractions as accurately as existing methods and significantly improves the detection of small cell populations and the distinction of similar cell types.

Notes

Acknowledgement

This work was supported by BMBF (eMed Grant 031A428A) and DFG (FOR-2127 and SFB/TRR-55).

References

  1. 1.
    Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pagès, C., Tosolini, M., Camus, M., Berger, A., Wind, P., et al.: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795), 1960–1964 (2006)CrossRefGoogle Scholar
  2. 2.
    Fridman, W.H., Pagès, F., Sautès-Fridman, C., Galon, J.: The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12(4), 298–306 (2012)CrossRefGoogle Scholar
  3. 3.
    Hackl, H., Charoentong, P., Finotello, F., Trajanoski, Z.: Computational genomics tools for dissecting tumour-immune cell interactions. Nat. Rev. Genet. 17(8), 441–458 (2016)CrossRefGoogle Scholar
  4. 4.
    Ibrahim, S.F., van den Engh, G.: Flow cytometry and cell sorting. In: Kumar, A., Galaev, I.Y., Mattiasson, B. (eds.) Cell Separation. Advances in Biochemical Engineering/Biotechnology, pp. 19–39. Springer, Heidelberg (2007).  https://doi.org/10.1007/10_2007_073CrossRefGoogle Scholar
  5. 5.
    Bendall, S.C., Simonds, E.F., Qiu, P., El-ad, D.A., Krutzik, P.O., Finck, R., Bruggner, R.V., Melamed, R., Trejo, A., Ornatsky, O.I., et al.: Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332(6030), 687–696 (2011)CrossRefGoogle Scholar
  6. 6.
    Wu, A.R., Neff, N.F., Kalisky, T., Dalerba, P., Treutlein, B., Rothenberg, M.E., Mburu, F.M., Mantalas, G.L., Sim, S., Clarke, M.F., et al.: Quantitative assessment of single-cell RNA-sequencing methods. Nat. Methods 11(1), 41–46 (2014)CrossRefGoogle Scholar
  7. 7.
    Lu, P., Nakorchevskiy, A., Marcotte, E.M.: Expression deconvolution: a reinterpretation of DNA microarray data reveals dynamic changes in cell populations. Proc. Nat. Acad. Sci. USA 100(18), 10370–10375 (2003)CrossRefGoogle Scholar
  8. 8.
    Abbas, A.R., Wolslegel, K., Seshasayee, D., Modrusan, Z., Clark, H.F.: Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus. PLoS One 4(7), e6098 (2009)CrossRefGoogle Scholar
  9. 9.
    Gong, T., Hartmann, N., Kohane, I.S., Brinkmann, V., Staedtler, F., Letzkus, M., Bongiovanni, S., Szustakowski, J.D.: Optimal deconvolution of transcriptional profiling data using quadratic programming with application to complex clinical blood samples. PLoS One 6(11), e27156 (2011)CrossRefGoogle Scholar
  10. 10.
    Qiao, W., Quon, G., Csaszar, E., Yu, M., Morris, Q., Zandstra, P.W.: PERT: a method for expression deconvolution of human blood samples from varied microenvironmental and developmental conditions. PLoS Comput. Biol. 8(12), e1002838 (2012)CrossRefGoogle Scholar
  11. 11.
    Altboum, Z., Steuerman, Y., David, E., Barnett-Itzhaki, Z., Valadarsky, L., Keren-Shaul, H., Meningher, T., Mendelson, E., Mandelboim, M., Gat-Viks, I., et al.: Digital cell quantification identifies global immune cell dynamics during influenza infection. Mol. Syst. Biol. 10(2), 720 (2014)CrossRefGoogle Scholar
  12. 12.
    Newman, A.M., Liu, C.L., Green, M.R., Gentles, A.J., Feng, W., Xu, Y., Hoang, C.D., Diehn, M., Alizadeh, A.A.: Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12(5), 453–457 (2015)CrossRefGoogle Scholar
  13. 13.
    Li, B., Severson, E., Pignon, J.C., Zhao, H., Li, T., Novak, J., Jiang, P., Shen, H., Aster, J.C., Rodig, S., et al.: Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol. 17(1), 174 (2016)CrossRefGoogle Scholar
  14. 14.
    Tirosh, I., Izar, B., Prakadan, S.M., Wadsworth, M.H., Treacy, D., Trombetta, J.J., Rotem, A., Rodman, C., Lian, C., Murphy, G., et al.: Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352(6282), 189–196 (2016)CrossRefGoogle Scholar
  15. 15.
    Chen, W.C., Ostrouchov, G., Schmidt, D., Patel, P., Yu, H.: pbdMPI: Programming with Big Data - Interface to MPI. R Package (2012). https://cran.r-project.org/package=pbdMPI
  16. 16.
    Chen, W.C., Ostrouchov, G., Schmidt, D., Patel, P., Yu, H.: A Quick Guide for the pbdMPI Package. R Vignette (2012). https://cran.r-project.org/package=pbdMPI
  17. 17.
    Georg, P., Richtmann, D., Wettig, T.: DD-\(\alpha \)AMG on QPACE 3. arXiv:1710.07041 (2017)
  18. 18.
    Veillette, A., Bookman, M.A., Horak, E.M., Bolen, J.B.: The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell 55(2), 301–308 (1988)CrossRefGoogle Scholar
  19. 19.
    Addison, E.G., North, J., Bakhsh, I., Marden, C., Haq, S., Al-Sarraj, S., Malayeri, R., Wickremasinghe, R.G., Davies, J.K., Lowdell, M.W.: Ligation of CD8\(\alpha \) on human natural killer cells prevents activation-induced apoptosis and enhances cytolytic activity. Immunology 116(3), 354–361 (2005)CrossRefGoogle Scholar
  20. 20.
    Moretta, A., Bottino, C., Vitale, M., Pende, D., Cantoni, C., Mingari, M.C., Biassoni, R., Moretta, L.: Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Ann. Rev. Immunol. 19(1), 197–223 (2001). PMID: 11244035CrossRefGoogle Scholar
  21. 21.
    Rickert, R.C., Rajewsky, K., Roes, J.: Impairment of T-cell-dependent B-cell responses and B-l cell development in CD19-deficient mice. Nature 376(6538), 352–355 (1995).  https://doi.org/10.1038/376352a0CrossRefGoogle Scholar
  22. 22.
    Li, H., Ayer, L.M., Lytton, J., Deans, J.P.: Store-operated cation entry mediated by CD20 in membrane rafts. J. Biol. Chem. 278(43), 42427–42434 (2003)CrossRefGoogle Scholar
  23. 23.
    Hsueh, R.C., Scheuermann, R.H.: Tyrosine kinase activation in the decision between growth, differentiation, and death responses initiated from the B cell antigen receptor. Adv. Immunol. 75, 283–316 (2000)CrossRefGoogle Scholar
  24. 24.
    Wienands, J., Schweikert, J., Wollscheid, B., Jumaa, H., Nielsen, P.J., Reth, M.: SLP-65: a new signaling component in B lymphocytes which requires expression of the antigen receptor for phosphorylation. J. Exp. Med. 188(4), 791–795 (1998)CrossRefGoogle Scholar
  25. 25.
    Hori, S., Nomura, T., Sakaguchi, S.: Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609), 1057–1061 (2003)CrossRefGoogle Scholar
  26. 26.
    Haziot, A., Ferrero, E., Köntgen, F., Hijiya, N., Yamamoto, S., Silver, J., Stewart, C.L., Goyert, S.M.: Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice. Immunity 4(4), 407–414 (1996)CrossRefGoogle Scholar
  27. 27.
    Sherr, C.J., Rettenmier, C.W., Sacca, R., Roussel, M.F., Look, A.T., Stanley, E.R.: The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF 1. Cell 41(3), 665–676 (1985)CrossRefGoogle Scholar
  28. 28.
    Wu, Y.J., La Pierre, D.P., Wu, J., Yee, A.J., Yang, B.B.: The interaction of versican with its binding partners. Cell Res. 15(7), 483–494 (2005)CrossRefGoogle Scholar
  29. 29.
    Du, W., Yang, W., Yee, A.J.: Roles of versican in cancer biology - tumorigenesis, progression and metastasis. Histol. Histopathol. 28(6), 701–713 (2013)Google Scholar
  30. 30.
    Gupta, A., Kaur, C.D., Jangdey, M., Saraf, S.: Matrix metalloproteinase enzymes and their naturally derived inhibitors: novel targets in photocarcinoma therapy. Ageing Res. Rev. 13, 65–74 (2014)CrossRefGoogle Scholar
  31. 31.
    Sneddon, J.B., Zhen, H.H., Montgomery, K., van de Rijn, M., Tward, A.D., West, R., Gladstone, H., Chang, H.Y., Morganroth, G.S., Oro, A.E., et al.: Bone morphogenetic protein antagonist gremlin 1 is widely expressed by cancer-associated stromal cells and can promote tumor cell proliferation. Proc. Nat. Acad. Sci. USA 103(40), 14842–14847 (2006)CrossRefGoogle Scholar
  32. 32.
    Gory-Faure, S., Prandini, M., Pointu, H., Roullot, V., Pignot-Paintrand, I., Vernet, M., Huber, P.: Role of vascular endothelial-cadherin in vascular morphogenesis. Development 126(10), 2093–2102 (1999)Google Scholar
  33. 33.
    Shi, C., Lu, J., Wu, W., Ma, F., Georges, J., Huang, H., Balducci, J., Chang, Y., Huang, Y.: Endothelial cell-specific molecule 2 (ECSM2) localizes to cell-cell junctions and modulates bFGF-directed cell migration via the ERK-FAK pathway. PloS One 6(6), e21482 (2011)CrossRefGoogle Scholar
  34. 34.
    Haseloff, R.F., Dithmer, S., Winkler, L., Wolburg, H., Blasig, I.E.: Transmembrane proteins of the tight junctions at the blood-brain barrier: structural and functional aspects. Semin. Cell Dev. Biol. 38, 16–25 (2015)CrossRefGoogle Scholar
  35. 35.
    Sadler, J.E.: Biochemistry and genetics of von Willebrand factor. Annu. Rev. Biochem. 67(1), 395–424 (1998). PMID: 9759493CrossRefGoogle Scholar
  36. 36.
    Aziz, A., Harrop, S.P., Bishop, N.E.: DIA1R is an X-linked gene related to Deleted In Autism-1. PLoS One 6(1), e14534 (2011)CrossRefGoogle Scholar
  37. 37.
    Marinov, G.K., Williams, B.A., McCue, K., Schroth, G.P., Gertz, J., Myers, R.M., Wold, B.J.: From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 24(3), 496–510 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Franziska Görtler
    • 1
  • Stefan Solbrig
    • 2
  • Tilo Wettig
    • 2
  • Peter J. Oefner
    • 3
  • Rainer Spang
    • 1
  • Michael Altenbuchinger
    • 1
  1. 1.Statistical Bioinformatics, Institute of Functional GenomicsUniversity of RegensburgRegensburgGermany
  2. 2.Department of PhysicsUniversity of RegensburgRegensburgGermany
  3. 3.Institute of Functional GenomicsUniversity of RegensburgRegensburgGermany

Personalised recommendations