Skip to main content

Context-Specific Nested Effects Models

  • Conference paper
  • First Online:
Research in Computational Molecular Biology (RECOMB 2018)

Abstract

Advances in systems biology have made clear the importance of network models for capturing knowledge about complex relationships in gene regulation, metabolism, and cellular signaling. A common approach to uncovering biological networks involves performing perturbations on elements of the network, such as gene knockdown experiments, and measuring how the perturbation affects some reporter of the process under study. In this paper, we develop context-specific nested effects models (CSNEMs), an approach to inferring such networks that generalizes nested effect models (NEMs). The main contribution of this work is that CSNEMs explicitly model the participation of a gene in multiple contexts, meaning that a gene can appear in multiple places in the network. Biologically, the representation of regulators in multiple contexts may indicate that these regulators have distinct roles in different cellular compartments or cell cycle phases. We present an evaluation of the method on simulated data as well as on data from a study of the sodium chloride stress response in Saccharomyces cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a detailed derivation see https://github.com/sverchkov/mc-em-cs-nem/blob/master/recomb-2018-supplement/recomb-2018-supplement.pdf, commit 98b01f19357e3d58eae81764d42a6903624e3433 at the time of submission.

  2. 2.

    An NEM learned from the data is at https://github.com/sverchkov/mc-em-cs-nem/blob/master/recomb-2018-supplement/recomb-2018-supplement.pdf.

References

  1. Berry, D.B., Gasch, A.P.: Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Mol. Biol. Cell 19(11), 4580–4587 (2008)

    Article  Google Scholar 

  2. Breitkreutz, A., Choi, H., Sharom, J.R., Boucher, L., Neduva, V., Larsen, B., Lin, Z.-Y., Breitkreutz, B.-J., Stark, C., Liu, G.: A global protein kinase and phosphatase interaction network in yeast. Science 328(5981), 1043–1046 (2010)

    Article  Google Scholar 

  3. Chasman, D., Ho, Y.-H., Berry, D.B., Nemec, C.M., MacGilvray, M.E., Hose, J., Merrill, A.E., Lee, M.V., Will, J.L., Coon, J.J.: Pathway connectivity and signaling coordination in the yeast stress-activated signaling network. Mol. Syst. Biol. 10(11), 759 (2014)

    Article  Google Scholar 

  4. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. J. Comput. Biol. 7(3–4), 601–620 (2000)

    Article  Google Scholar 

  5. Fröhlich, H., Beißbarth, T., Tresch, A., Kostka, D., Jacob, J., Spang, R., Markowetz, F.: Analyzing gene perturbation screens with nested effects models in R and bioconductor. Bioinformatics 24(21), 2549–2550 (2008)

    Article  Google Scholar 

  6. Fröhlich, H., Fellmann, M., Sültmann, H., Poustka, A., Beißbarth, T.: Large scale statistical inference of signaling pathways from RNAi and microarray data. BMC Bioinform. 8(1), 1 (2007)

    Article  Google Scholar 

  7. Irrthum, A., Wehenkel, L., Geurts, P.: Inferring regulatory networks from expression data using tree-based methods. PLoS ONE 5(9), e12776 (2010)

    Article  Google Scholar 

  8. Lee, M.V., Topper, S.E., Hubler, S.L., Hose, J., Wenger, C.D., Coon, J.J., Gasch, A.P.: A dynamic model of proteome changes reveals new roles for transcript alteration in yeast. Mol. Syst. Biol. 7(1), 514 (2011)

    Article  Google Scholar 

  9. Lee, P., Cho, B.-R., Joo, H.-S., Hahn, J.-S.: Yeast Yak1 kinase, a bridge between PKA and stress-responsive transcription factors, Hsf1 and Msn2/Msn4. Mol. Microbiol. 70(4), 882–895 (2008)

    Google Scholar 

  10. Lönnstedt, I., Speed, T.: Replicated microarray data. Statistica Sinica 12(1), 31–46 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Markowetz, F., Bloch, J., Spang, R.: Non-transcriptional pathway features reconstructed from secondary effects of RNA interference. Bioinformatics 21(21), 4026–4032 (2005)

    Article  Google Scholar 

  12. Markowetz, F., Kostka, D., Troyanskaya, O.G., Spang, R.: Nested effects models for high-dimensional phenotyping screens. Bioinformatics 23(13), i305–i312 (2007)

    Article  Google Scholar 

  13. Markowetz, F., Spang, R.: Inferring cellular networks a review. BMC Bioinform. 8(6), S5 (2007)

    Article  Google Scholar 

  14. Mayordomo, I., Estruch, F., Sanz, P.: Convergence of the target of rapamycin and the Snf1 protein kinase pathways in the regulation of the subcellular localization of Msn2, a transcriptional activator of STRE (Stress Response Element)-regulated genes. J. Biol. Chem. 277(38), 35650–35656 (2002)

    Article  Google Scholar 

  15. Nadal, E., Posas, F.: Osmostress-induced gene expression-a model to understand how stress-activated protein kinases (SAPKs) regulate transcription. FEBS J. 282(17), 3275–3285 (2015)

    Article  Google Scholar 

  16. Niederberger, T., Etzold, S., Lidschreiber, M., Maier, K.C., Martin, D.E., Frohlich, H., Cramer, P., Tresch, A.: MC EMiNEM maps the interaction landscape of the mediator. PLoS Comput. Biol. 8(6), e1002568 (2012)

    Article  Google Scholar 

  17. Ohya, Y., Sese, J., Yukawa, M., Sano, F., Nakatani, Y., Saito, T.L., Saka, A., Fukuda, T., Ishihara, S., Oka, S.: High-dimensional and large-scale phenotyping of yeast mutants. Proc. Nat. Acad. Sci. U.S.A. 102(52), 19015–19020 (2005)

    Article  Google Scholar 

  18. Petrenko, N., Chereji, R.V., McClean, M.N., Morozov, A.V., Broach, J.R.: Noise and interlocking signaling pathways promote distinct transcription factor dynamics in response to different stresses. Mol. Biol. Cell 24(12), 2045–2057 (2013)

    Article  Google Scholar 

  19. Piano, F., Schetter, A.J., Morton, D.G., Gunsalus, K.C., Reinke, V., Kim, S.K., Kemphues, K.J.: Gene clustering based on RNAi phenotypes of ovary-enriched genes in C. elegans. Curr. Biol. 12(22), 1959–1964 (2002)

    Article  Google Scholar 

  20. Rep, M., Krantz, M., Thevelein, J.M., Hohmann, S.: The transcriptional response of Saccharomyces cerevisiae to osmotic shock Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J. Biol. Chem. 275(12), 8290–8300 (2000)

    Article  Google Scholar 

  21. Sadeh, M.J., Moa, G., Spang, R.: Considering unknown unknowns: reconstruction of nonconfoundable causal relations in biological networks. J. Comput. Biol. 20(11), 920–932 (2013)

    Article  MathSciNet  Google Scholar 

  22. Siebourg-Polster, J., Mudrak, D., Emmenlauer, M., Rämö, P., Dehio, C., Greber, U., Fröhlich, H., Beerenwinkel, N.: NEMix: single-cell nested effects models for probabilistic pathway stimulation. PLoS Comput. Biol. 11(4), e1004078 (2015)

    Article  Google Scholar 

  23. Smyth, G.K.: Limma: linear models for microarray data. In: Gentleman, R., Carey, V.J., Huber, W., Irizarry, R.A., Dudoit, S. (eds.) Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Springer, New York (2005). https://doi.org/10.1007/0-387-29362-0_23

    Chapter  Google Scholar 

  24. Smyth, G.K.: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3(1), 3 (2004)

    Article  MathSciNet  Google Scholar 

  25. Tresch, A., Markowetz, F.: Structure learning in nested effects models. Stat. Appl. Genet. Mol. Biol. 7(1), 9 (2008)

    Article  MathSciNet  Google Scholar 

  26. Vaske, C.J., House, C., Luu, T., Frank, B., Yeang, C.-H., Lee, N.H., Stuart, J.M.: A factor graph nested effects model to identify networks from genetic perturbations. PLoS Comput. Biol. 5(1), e1000274 (2009)

    Article  MathSciNet  Google Scholar 

  27. Weiss, E.L.: Mitotic exit and separation of mother and daughter cells. Genetics 192(4), 1165–1202 (2012)

    Article  Google Scholar 

  28. Wurzenberger, C., Gerlich, D.W.: Phosphatases: providing safe passage through mitotic exit. Nat. Rev. Mol. Cell Biol. 12(8), 469–482 (2011)

    Article  Google Scholar 

  29. Ye, T., Elbing, K., Hohmann, S.: The pathway by which the yeast protein kinase Snf1p controls acquisition of sodium tolerance is different from that mediating glucose regulation. Microbiology 154(9), 2814–2826 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

We thank anonymous reviewers for many constructive comments. This research was supported by NIH/NLM grant T15 LM0007359, NIH/NIAID grant U54 AI117954, and NIH/NIGMS grant R01 GM083989.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy Sverchkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sverchkov, Y., Ho, YH., Gasch, A., Craven, M. (2018). Context-Specific Nested Effects Models. In: Raphael, B. (eds) Research in Computational Molecular Biology. RECOMB 2018. Lecture Notes in Computer Science(), vol 10812. Springer, Cham. https://doi.org/10.1007/978-3-319-89929-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89929-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89928-2

  • Online ISBN: 978-3-319-89929-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics