A Nested 2-Level Cross-Validation Ensemble Learning Pipeline Suggests a Negative Pressure Against Crosstalk snoRNA-mRNA Interactions in Saccharomyces Cerevisae

  • Antoine Soulé
  • Jean-Marc Steyaert
  • Jérôme Waldispühl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10812)

Abstract

The growing number of RNA-mediated regulation mechanisms identified in the last decades suggests a widespread impact of RNA-RNA interactions. The efficiency of the regulation relies on highly specific and coordinated interactions, while simultaneously repressing the formation of opportunistic complexes. However, the analysis of RNA interactomes is highly challenging due to the large number of potential partners, discrepancy of the size of RNA families, and the inherent noise in interaction predictions.

We designed a recursive 2-step cross-validation pipeline to capture the specificity of ncRNA-mRNA interactomes. Our method has been designed to detect significant loss or gain of specificity between ncRNA-mRNA interaction profiles. Applied to snoRNA-mRNA in Saccharomyces Cerevisae, our results suggest the existence of a repression of ncRNA affinities with mRNAs, and thus the existence of an evolutionary pressure inhibiting such interactions.

Keywords

RNA RNA-RNA interaction Ensemble learning 

References

  1. 1.
    He, L., Hannon, G.J.: MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5(7), 522–531 (2004).  https://doi.org/10.1038/nrg1379CrossRefGoogle Scholar
  2. 2.
    Altuvia, S., Zhang, A., Argaman, L., Tiwari, A., Storz, G.: The Escherichia coli OxyS regulatory RNA represses fhlA translation by blocking ribosome binding. EMBO J. 17(20), 6069–6075 (1998).  https://doi.org/10.1093/emboj/17.20.6069CrossRefGoogle Scholar
  3. 3.
    Scott, M.S., Ono, M.: From snoRNA to miRNA: dual function regulatory non-coding RNAs. Biochimie 93(11), 1987–1992 (2011).  https://doi.org/10.1016/j.biochi.2011.05.026CrossRefGoogle Scholar
  4. 4.
    Sharma, E., Sterne-Weiler, T., O’Hanlon, D., Blencowe, B.J.: Global mapping of human RNA-RNA interactions. Mol. Cell 62(4), 618–626 (2016).  https://doi.org/10.1016/j.molcel.2016.04.030CrossRefGoogle Scholar
  5. 5.
    Nguyen, T.C., Cao, X., Yu, P., Xiao, S., Lu, J., Biase, F.H., Sridhar, B., Huang, N., Zhang, K., Zhong, S.: Mapping RNA-RNA interactome and RNA structure in vivo by MARIO. Nat. Commun. 7, 12023 (2016).  https://doi.org/10.1038/ncomms12023CrossRefGoogle Scholar
  6. 6.
    Panni, S., Prakash, A., Bateman, A., Orchard, S.: The yeast noncoding RNA interaction network. RNA 23(10), 1479–1492 (2017).  https://doi.org/10.1261/rna.060996.117CrossRefGoogle Scholar
  7. 7.
    Aw, J.G.A., Shen, Y., Wilm, A., Sun, M., Lim, X.N., Boon, K.L., Tapsin, S., Chan, Y.S., Tan, C.P., Sim, A.Y.L., Zhang, T., Susanto, T.T., Fu, Z., Nagarajan, N., Wan, Y.: In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation. Mol. Cell 62(4), 603–617 (2016).  https://doi.org/10.1016/j.molcel.2016.04.028CrossRefGoogle Scholar
  8. 8.
    Mattick, J.S.: RNA regulation: a new genetics? Nat. Rev. Genet. 5(4), 316–323 (2004).  https://doi.org/10.1038/nrg1321CrossRefGoogle Scholar
  9. 9.
    Weill, N., Lisi, V., Scott, N., Dallaire, P., Pelloux, J., Major, F.: MiRBooking simulates the stoichiometric mode of action of microRNAs. Nucleic Acids Res. 43(14), 6730–6738 (2015).  https://doi.org/10.1093/nar/gkv619CrossRefGoogle Scholar
  10. 10.
    Umu, S.U., Poole, A.M., Dobson, R.C., Gardner, P.P.: Avoidance of stochastic RNA interactions can be harnessed to control protein expression levels in bacteria and archaea. Elife 5 (2016).  https://doi.org/10.7554/eLife.13479
  11. 11.
    Waters, L.S., Storz, G.: Regulatory RNAs in bacteria. Cell 136(4), 615–628 (2009).  https://doi.org/10.1016/j.cell.2009.01.043. http://www.sciencedirect.com/science/article/pii/S0092867409001251CrossRefGoogle Scholar
  12. 12.
    Storz, G., Vogel, J., Wassarman, K.M.: Regulation by small RNAs in bacteria: expanding frontiers. Mol. Cell 43(6), 880–891 (2011).  https://doi.org/10.1016/j.molcel.2011.08.022. http://www.sciencedirect.com/science/article/pii/S1097276511006435CrossRefGoogle Scholar
  13. 13.
    Sherman, D., Durrens, P., Beyne, E., Nikolski, M., Souciet, J.L.: Génolevures: comparative genomics and molecular evolution of hemiascomycetous yeasts. Nucleic Acids Res. 32(Database Issue), D315–D318 (2004).  https://doi.org/10.1093/nar/gkh091. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC308825/CrossRefGoogle Scholar
  14. 14.
    Mückstein, U., Tafer, H., Hackermüller, J., Bernhart, S.H., Stadler, P.F., Hofacker, I.L.: Thermodynamics of RNA-RNA binding. Bioinformatics 22(10), 1177–1182 (2006)CrossRefGoogle Scholar
  15. 15.
    Wright, P.R., Georg, J., Mann, M., Sorescu, D.A., Richter, A.S., Lott, S., Kleinkauf, R., Hess, W.R., Backofen, R.: CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains. NAR 42(Web Server Issue), W119–W123 (2014).  https://doi.org/10.1093/nar/gku359. PRW, JG and MM contributed equally to thisCrossRefGoogle Scholar
  16. 16.
    Thuriaux, P., Martin, C., Blondel, L., Visset, D.: Les organismes modèles: la levure. Belin, Paris (2004)Google Scholar
  17. 17.
    Busch, A., Richter, A.S., Backofen, R.: IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24(24), 2849–2856 (2008).  https://doi.org/10.1093/bioinformatics/btn544CrossRefGoogle Scholar
  18. 18.
    Tafer, H., Kehr, S., Hertel, J., Hofacker, I.L., Stadler, P.F.: RNAsnoop: efficient target prediction for H/ACA snoRNAs. Bioinformatics 26(5), 610–616 (2010).  https://doi.org/10.1093/bioinformatics/btp680CrossRefGoogle Scholar
  19. 19.
    Lai, D., Meyer, I.M.: A comprehensive comparison of general RNA-RNA interaction prediction methods. Nucleic Acids Res. 44(7), e61 (2016)CrossRefGoogle Scholar
  20. 20.
    Umu, S.U., Gardner, P.P.: A comprehensive benchmark of RNA-RNA interaction prediction tools for all domains of life. Bioinformatics 33(7), 988–996 (2017)Google Scholar
  21. 21.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer, New York (2009).  https://doi.org/10.1007/978-0-387-84858-7CrossRefMATHGoogle Scholar
  22. 22.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Computer ScienceMcGill UniversityMontréalCanada
  2. 2.LIX - UMR 7161, École PolytechniquePalaiseauFrance

Personalised recommendations