Skip to main content

Earth Science [Big] Data Analytics


Tremendous research has been done and is still in progress in the domain of earth science. With the advent of Big Data and availability of datasets on Earth science, the study of Earth sciences has reached new dimensions. The diversity and high dimensional remote sensing data have provided with complex data sets capable of giving insights and intelligence that was not possible in last decades. With Computing progress made in ingesting and inferring data from myriad of sources including high resolution cameras mounted on satellites and sensors giving access to unconventional Big Data and also with the GPU computing and Data science advances we are today able to leverage machine learning and deep learning in extensively complex datasets derived from remote sensing about Earth Sciences. Our focus is to analyze what exactly does big data mean in earth science applications and how can big data provide added value in this context. Furthermore, this chapter demonstrates various big data tools which can be mapped with various techniques to be used for experimenting earth science datasets, processed, and exploited for different earth science applications. In order to illustrate the aforementioned aspects, instances are presented in order to demonstrate the use of big data in remote sensing. Firstly, this chapter presents earth science studies, application areas/research fields and a brief insight on earth science data. Then various techniques implemented in this domain are elaborated viz. classification, clustering, regression, deep learning, pattern recognition, machine learning, earth data analysis and processing. Later this chapter introduces big data analytics and various tools/platforms in big data viz. BigInsights, GIS, Jupyter notebook, Matlab, Python. Finally, it is shown how these tools are mapped to Earth science datasets using ArcGIS to illustrate with experimental instances the inferences and patterns generated.


  • Earth data analysis and processing
  • Geosciences
  • GIS
  • Big data analytics
  • Python
  • Jupyter notebook
  • BigInsights
  • ArcGIS

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-89923-7_4
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-89923-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6
Fig. 4.7
Fig. 4.8
Fig. 4.9
Fig. 4.10
Fig. 4.11
Fig. 4.12
Fig. 4.13
Fig. 4.14
Fig. 4.15
Fig. 4.16
Fig. 4.17
Fig. 4.18
Fig. 4.19
Fig. 4.20


  1. Karpatne A, Liess S (2015) A guide to earth science data: summary and research challenges. IEEE Comput Sci Eng 14–18

    CrossRef  Google Scholar 

  2. Kempler S, Mathews T (2016) Earth science data analytics tools, techniques and more. In: ESIP Summer Meeting. ESIP Commons

    Google Scholar 

  3. Number of earthquakes by year.

  4. Torahi AA, Rai SC (2011) Land cover classification and forest change analysis, using satellite imagery—a case study in Dehdez Area of Zagros Mountain in Iran. J Geogr Inf Syst 3:1–11

    Google Scholar 

  5. Steinbach M, Tan P-N, Boriah S, Kumar V, Klooster S, Potter C (2006) The application of clustering to earth science data: progress and challenges. In: Proceedings of the 2nd NASA data mining workshop

    Google Scholar 

  6. Clustering. Japan Association of Remote Sensing. Available at

  7. Freitas AA (2008) A review of evolutionary algorithms for data mining. In: Maimon O, Rokach L (eds) Soft computing for knowledge discovery and data mining. Springer, New York, pp 79–111. ISSN 978-0-387-69935-6,

    CrossRef  Google Scholar 

  8. Engelbrecht AP (2007) Computational intelligence: an introduction, 2nd edn. Wiley, Sussex

    CrossRef  Google Scholar 

  9. Freitas AA (2003) A survey of evolutionary algorithms for data mining and knowledge. In: Ghosh A, Tsutsui S (eds) Advances in evolutionary computing: theory and applications. Springer, New York, pp 819–846

    CrossRef  Google Scholar 

  10. Cuddy SJ, Glover PWJ (2002) The application of fuzzy logic and genetic algorithms to reservoir characterization and modeling. In: Wong P, Aminzadeh F, Nikravesh M (eds) Soft Computing for reservoir characterization and modeling. Springer, Berlin, pp 219–242. ISSN 14349922

    CrossRef  Google Scholar 


  12. Patra P (2011) Remote sensing and geographical information system (GIS). Assoc Geogr Stud 1–28

    Google Scholar 

  13. Algorithms in GIS. Available at

  14. India WRIS. Available at

  15. Introduction to InfoSphere BigInsights. IBM Knowledge Center, available at

    Google Scholar 

  16. Lin JW-B (2012) Why Python is the next wave in earth sciences computing. Bull Am Meteor Soc 93(12):1823–1824.

    CrossRef  Google Scholar 

  17. Groenendijk M (2017) Mapping all the things with Python. IBM Watson Data Lab. Available at

  18. Kempler L. Teaching with Matlab. Available at

  19. Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters. Commun ACM 51:107–113

    CrossRef  Google Scholar 

  20. Li Z, Yang C, Jin B, Yu M, Liu K, Sun M, Zhan M (2015) Enabling big geoscience data analytics with a cloud-based, MapReduce-enabled and service-oriented workflow framework. PLoS ONE 10(3):e0116781.

    CrossRef  Google Scholar 

  21. Kamal Sarwar, Ripon SH, Dey N, Ashour AS, Santhi V (2016) A MapReduce approach to diminish imbalance parameters for big deoxyribonucleic acid dataset. Comput Methods Programs Biomed 131:191–206

    CrossRef  Google Scholar 

  22. MapReduce for Gridding LIDAR Data. In: Applications and Limitations of MapReduce. Available at

  23. Ericson G, Franks L, Rorer B (2017) How to choose algorithms for Microsoft Azure Machine Learning. Available at

  24. Ferguson M (2012) Architecting a big data platform for analytics. Intelligent Business Strategies Limited

    Google Scholar 

  25. Dutt V, Chaudhry V, Khan I (2012) Pattern recognition: an overview. Am J Intell Syst 2(1):23–27.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mani Madhukar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Madhukar, M., Pooja (2019). Earth Science [Big] Data Analytics. In: Dey, N., Bhatt, C., Ashour, A. (eds) Big Data for Remote Sensing: Visualization, Analysis and Interpretation. Springer, Cham.

Download citation