Davenport A (2000) The history of photography: an overview, 2nd edn. The University of New Mexico Press, Albuquerque
Google Scholar
Barber M, Wickstead H (2010) One immense black spot’: aerial views of London 1784–1918. Lond J 35:236–254
CrossRef
Google Scholar
Campbell JB, Wynne RH (2011) Introduction to remote sensing, 5th edn. The Guilford Press, New York
Google Scholar
Butler MJA, Mouchot MC, Barale V, LeBlanc C (1988) The application of remote sensing technology to marine fisheries: an introductory manual. Food and Agriculture Organization of United Nations, Rome
Google Scholar
Gosh S (1981) History of Photogrammetry. Laval University, Québec
Google Scholar
Schenk T (2005) Introduction to photogrammetry, 1st edn. The Ohio State University, Columbus
Google Scholar
Stichelbaut B (2006) The application of First World War aerial photography to archaeology: the Belgian images. Antiquity 80:161–172
CrossRef
Google Scholar
The Professional Aerial Photographers Association (2017) History of aerial photography
Google Scholar
Monmonier M (2002) Aerial photography at the agricultural adjustment administration: acreage controls, conservation benefits, and overhead surveillance in the 1930s. Photogramm Eng Remote Sens 68:1257–1262
Google Scholar
Rango A, Havstad K, Estell R (2011) The utilization of historical data and geospatial technology advances at the Jornada experimental range to support Western America ranching culture. Remote Sens 3:2089–2109
CrossRef
Google Scholar
Cracknell A, Haynes L (1991) Introduction to remote sensing, 2nd edn. Taylor & Francis Ltd., London
Google Scholar
Ruffner K (2017) Corona: America’s first satellite program. Central Intelligence Agency, Washington, DC
Google Scholar
NASA Science Website (2016) TIROS: The television infrared observation satellite program. In: NASA Science Website
Google Scholar
Graham S (1999) Remote sensing: introduction and history. In: NASA Earth Observatory. https://earthobservatory.nasa.gov/Features/RemoteSensing/
Mack P (1990) Viewing the earth: The social construction of the landsat satellite sytem. The MIT Press, London
Google Scholar
NASA Landsat Science (2017) History: from the beginning. In: NASA Landsat Science
Google Scholar
Van Wie P, Stein M (1976) A landsat digital image rectification system. Greenbelt
Google Scholar
Patra P (2010) Remote sensing and geographical information system (gis). Assoc Geogr Stud
Google Scholar
Antenucci JC, Brown K, Croswell PL, Kevany MJ, Archer H (1991) Geographic information systems. A guide to the technology. New York
Google Scholar
Foresman T (2010) GIS, History of geographic information systems. Encycl Geogr 1281–1284
Google Scholar
NASA Jet Propulsion Laboratory (2010) AVIRIS—airborne visible/infrared imaging spectrometer—general overview. https://aviris.jpl.nasa.gov/aviris/
NASA Terra—The EOS Flagship (2017) Terra Instruments|Terra. https://terra.nasa.gov/about/terra-instruments
Mohamed B, Werner K (2007) Geospatial information bottom-up: a matter of trust and semantics. In: Fabrikant SI, Wachowicz M (eds) The European information society. Springer, pp 365–387
Google Scholar
Farman J (2010) Mapping the digital empire: Google earth and the process of postmodern cartography. New Media Soc 12:869–888
CrossRef
Google Scholar
Ma Y, Wu H, Wang L, Huang B, Ranjan R, Zomaya A, Jie W (2015) Remote sensing big data computing: challenges and opportunities. Futur Gener Comput Syst 51:47–60. https://doi.org/10.1016/j.future.2014.10.029
CrossRef
Google Scholar
Zikopoulos P, Eaton C (2011) Understanding big data: analytics for enterprise class Hadoop and streaming data, 1st edn. McGraw-Hill Osborne Media (IBM)
Google Scholar
NASA (2010) On-orbit satellite servicing study
Google Scholar
Kambatla K, Kollias G, Kumar V, Grama A (2014) Trends in big data analytics. J Parallel Distrib Comput 74:2561–2573
CrossRef
Google Scholar
NASA Earth Data (2017) Getting petabytes to people: how the EOSDIS facilitates earth observing data discovery and use. https://earthdata.nasa.gov/getting-petabytes-to-people-how-the-eosdis-facilitates-earth-observing-data-discovery-and-use
ITC (2017) ITC-ITC’s database of satellites and sensors—all sensors. https://www.itc.nl/Pub/sensordb/AllSensors.aspx
Villars RL, Olofson CW, Eastwood M (2011) Big data: what it is and why you should care. White Pap. https://doi.org/10.1080/01616846.2017.1313045
CrossRef
Google Scholar
Justice CO, Vermote E, Townshend JRG, Defries R, Roy DP, Hall DK, Salomonson VV, Privette JL, Riggs G, Strahler A, Lucht W, Myneni RB, Knyazikhin Y, Running SW, Nemani RR, Zhengming Wan Z, Huete A, van Leeuwen W, Wolfe RE, Giglio L, Muller J, Lewis P, Barnsley MJ (1998) The moderate resolution imaging spectroradiometer (MODIS): land remote sensing for global change research. IEEE Trans Geosci Remote Sens 36:1228–1249. https://doi.org/10.1109/36.701075
CrossRef
Google Scholar
Datameer (2017) Getting more value from your data lake. https://www.datameer.com/. Accessed 12 Sep 2017
Heger D, Ogunleye J (2015) Big data, the cloud and challenges of operationalising big data analytics. Curr Stud Comp Educ Sci Technol 2:427–435
Google Scholar
Mazhar M, Rathore U, Paul A, Ahmad A, Chen B-W, Huang B, Ji W (2015) Real-time big data analytical architecture for remote sensing application. IEEE J Sel Top Appl Earth Obs, Remote Sens, p 8
Google Scholar
Datameer (2017) Best practice for a successful Big Data jouney
Google Scholar
Freitas RM (2011) Virtual laboratory of remote sensing time series: visualization of MODIS EVI2 data set over South America. J Comput Interdiscip Sci 2:57–68. https://doi.org/10.6062/jcis.2011.02.01.0032
CrossRef
Google Scholar
Vatsavay R, Chandola V (2016) Guest editorial: big spatial data. Geoinformatica. https://doi.org/10.1007/s10707-016-0269-7
CrossRef
Google Scholar
Zicari RV, Rosselli M, Ivanov T, Korfiatis N, Tolle K, Niemann R, Reichenbach C (2016) Setting up a big data project: challenges, opportunities, technologies and optimization. In: Big data optimization: recent developments and challenges. Studies in big data. https://doi.org/10.1007/978-3-319-30265-2_2
Google Scholar
González SM, Berbel T dos RL (2014) Considering unstructure data for OLAP: a feasability study using a systematic review. Rev Sist Informação da FSMA 14:26–35
Google Scholar
Chen M, Mao S, Liu Y (2014) Big data: a survey. Mob Netw Appl 19:171–209. https://doi.org/10.1007/s11036-013-0489-0
CrossRef
Google Scholar
Khan N, Yaqoob I, Abaker I, Hashem T (2014) Big data: survey, technologies, opportunities, and challenges. Sci World J 18
Google Scholar
Lang S (2008) Object-based image analysis for remote sensing applications: modeling reality—dealing with complexity. In: Blaschke T, Lang S, Hay GJ (eds) Object based image anal. Springer, pp 3–27
Google Scholar
Hay GJ, Castilla G (2006) Object-based image analysis: strengths, weaknesses, opportunities and threats (SWOT). OBIA, Int Arch Photogramm Remote Sens Spat Inf Sci 3
Google Scholar
Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogramm Remote Sens 65:2–16
CrossRef
Google Scholar
Audubon, Cornell Lab of Orithnology (2017) About eBird|eBird. http://ebird.org/content/ebird/about/
Wood C, Sullivan B, Iliff M, Fink D, Kelling S (2011) eBird: engaging birders in science and conservation. PLoS Biol 9
Google Scholar
Fink D, Hochachka WM, Zuckerberg B, Winkler DW, Shaby B, Munson MA, Hooker G, Riedewald M, Sheldon D, Kelling S (2010) Spatiotemporal exploratory models for broad-scale survey data. Ecol Appl 20:2131–2147. https://doi.org/10.1890/09-1340.1
CrossRef
Google Scholar
Beddington JR, Agnew DJ, Clark CW (2007) Current problems in the management of marine fisheries. Science 80(316):1713–1716
CrossRef
Google Scholar
Gorospe KD, Michaels W, Pomeroy R, Elvidge C, Lynch P, Wongbusarakum S, Brainard RE (2016) The mobilization of science and technology fisheries innovations towards an ecosystem approach to fisheries management in the Coral Triangle and Southeast Asia. Mar Policy 74:143–152. https://doi.org/10.1016/j.marpol.2016.09.014
CrossRef
Google Scholar
Yamaguchi T, Asanuma I, Park JG, Mackin KJ, Mittleman J (2016) Estimation of vessel traffic density from Suomi NPP VIIRS day/night band. Ocean 2016 MTS/IEEE Monterey. OCE 2016:5–9. https://doi.org/10.1109/OCEANS.2016.7761309
CrossRef
Google Scholar
Straka WC, Seaman CJ, Baugh K, Cole K, Stevens E, Miller SD (2015) Utilization of the suomi national polar-orbiting partnership (npp) visible infrared imaging radiometer suite (viirs) day/night band for arctic ship tracking and fisheries management. Remote Sens 7:971–989. https://doi.org/10.3390/rs70100971
CrossRef
Google Scholar
Addo KA (2010) Urban and peri-urban agriculture in developing countries studied using remote sensing and in situ methods. Remote Sens 2:497–513. https://doi.org/10.3390/rs2020497
CrossRef
Google Scholar
Stefanov WL (2001) Monitoring urban land cover change: An expert system approach to land cover classification of semiarid to urban centers. Remote Sens Environ 77:173–185. https://doi.org/10.1016/S0034-4257(01)00204-8
CrossRef
Google Scholar
Yuliang Q, Buzhou M, Jiuliang F (2000) Study on monitoring farmland by using remote sensing and GIS in Shanxi China. Adv Space Res 26:1059–1064. https://doi.org/10.1016/S0273-1177(99)01118-7
CrossRef
Google Scholar