Advertisement

Big Data Approach for Managing the Information from Genomics, Proteomics, and Wireless Sensing in E-health

  • J. DemongeotEmail author
  • M. Jelassi
  • C. Taramasco
Chapter

Abstract

This chapter aims to show that big data techniques can serve for dealing with the information coming from medical signal devices such as bio-arrays, electro-physiologic recorders, mass spectrometers and wireless sensors in e-health applications, in which data fusion is needed for the personalization of Internet services allowing chronic patients, such as patients suffering cardio-respiratory diseases, to be monitored and educated in order to maintain a comfortable lifestyle at home or at their place of life. Therefore, after describing the main tools available in the big data approach for analyzing and interpreting data, several examples of medical signal devices are presented, such as physiologic recorders and actimetric sensors used to monitor a person at home. The information provided by the pathologic profiles detected and clustered thanks to big data algorithms, is exploited to calibrate the surveillance at home, personalize alarms and give adapted preventive and therapeutic education.

Keywords

Big data Genomics Proteomics Wireless sensing E-health Data fusion Alarm triggering 

Notes

Acknowledgements

We acknowledge the Projects PHC Maghreb SCIM (Systèmes Complexes et Ingénierie Médicale), ANR e-swallhome and H3ABioNet for their financial support.

References

  1. 1.
    Rhazes M (about 930) (1964) Manfe’ al Aghzie va Mazareha (Benefits of food and its harmfulness). Taban Press, TehranGoogle Scholar
  2. 2.
    Rhazes M (about 925) (1497) De regimine sanitatis, or Epistula Alexandro de dieta servanda. Juan de Sevilla Hispanus (Transl.) (about 1145). Antoine Vérard, ParisGoogle Scholar
  3. 3.
    Bacon R (1280) (1920) Secretum secretorum cum Glossis et Notulis. In: Steele R (ed) Opera hactenus inedita Rogeri Baconsi. Clarendon Press, Oxford, pp 287–313Google Scholar
  4. 4.
    Albæripæ W (about 1160) (1165) Tractatus Numerorum a ternario usque ad duodenarium, ad Thomam monachum, vol 969. Médiathèque de Troyes incunable, Troyes, pp 195–196Google Scholar
  5. 5.
    Shaiykh Bahā’ī, M (about 1610) (1843) Kholasat al-Hesab. The summa of arithmetic. In: Nesselmann GHF (trans.) Essenz der Rechenkunst von Mohammed Beha-eddi ben al-Hosain, al-Khulasa fil hisab. G. Reimer, BerlinGoogle Scholar
  6. 6.
    Tutte WT (1948) The dissection of equilateral triangles into equilateral triangles. Proc Cambridge Phil Soc 44:463–482CrossRefGoogle Scholar
  7. 7.
    Drápal A, Hämäläinen C (2010) An enumeration of equilateral triangle dissections. Discrete Appl Math 158:1479–1495CrossRefGoogle Scholar
  8. 8.
    Buteo J (1554) Opera geometrica. T. Bertellus, LyonGoogle Scholar
  9. 9.
    Duchon J (1976) Fonctions spline et espérances conditionnelles de champs gaussiens. Annales Scientifiques de l’Université de Clermont-Ferrand 14:19–27Google Scholar
  10. 10.
    Duchon J (1976) Interpolation de fonctions de deux variables suivant le principe de la flexion des plaques minces. RAIRO (Analyse Numérique) 10:5–12Google Scholar
  11. 11.
    Duchon J (1977) Splines minimizing rotation-invariant. Lect Notes Maths 571:85–100CrossRefGoogle Scholar
  12. 12.
    Bernoulli D (1760) Essai d’une nouvelle analyse de la mortalité causée par la petite vérole, et des avantages de l’inoculation pour la prévenir. Royal Academy of Sciences, ParisGoogle Scholar
  13. 13.
    d’Alembert J (1761) Onzième Mémoire: sur l’application du calcul des probabilités à l’inoculation de la petite vérole; notes sur le mémoire précédent; théorie mathématique de l’inoculation In Opuscules mathématiques. David, ParisGoogle Scholar
  14. 14.
    Demongeot J, Fouquet Y, Tayyab M, Vuillerme N (2009) Understanding physiological & degenerative natural vision mechanisms to define robust contrast and segmentation operators. PLoS ONE 4:e6010CrossRefGoogle Scholar
  15. 15.
    Demongeot J, Mattes J (1995) Neural networks and contrast enhancement in medical imaging. In: Fogelman-Soulié F, Gallinari P (eds) ICANN’95. EC2, Paris, pp 41–48Google Scholar
  16. 16.
    Herve T, Dolmazon JM, Demongeot J (1990) Random field and neural information: a new representation for multi-neuronal activity. Proc Natl Acad Sci U S A 87:806–810CrossRefGoogle Scholar
  17. 17.
    Demongeot J, Fricot J (1986) Random fields and renewal potentials. Springer Series, NATO ASI Serie F, vol 20, pp 71–84Google Scholar
  18. 18.
    LeCun Y (1986) Learning process in an asymmetric threshold network. Springer Series, NATO ASI Serie F, vol 20, pp 233–240Google Scholar
  19. 19.
    LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444CrossRefGoogle Scholar
  20. 20.
    Zhao Y, Gao S, Gallinari P, Guo J (2015) Knowledge base completion by learning pairwise-interaction differentiated embeddings. Data Min Knowl Discov 29:1486–1504CrossRefGoogle Scholar
  21. 21.
    Dey N, Ashour AS, Bhatt C (2017) Internet of things driven connected healthcare. In: Bhatt C, Dey N, Ashour A (eds) Internet of things and big data technologies for next generation healthcare. Studies in big data, vol 23. Springer, Cham, pp 13–33Google Scholar
  22. 22.
    Elhayatmy G, Dey N, Ashour AS (2018) Internet of things based wireless body area network in healthcare. In: Dey N, Hassanien A, Bhatt C, Ashour A, Satapathy S (eds) Internet of things and big data analytics toward next-generation intelligence. Studies in big data, vol 30. Springer, Cham, pp 3–20Google Scholar
  23. 23.
    Dey N, Ben Abdessalem Karâa W, Chakraborty S, Banerjee S, Salem MAM, Azar AT (2015) Image mining framework and techniques: a review. Int J Image Min 1:45–65CrossRefGoogle Scholar
  24. 24.
    Karâa BA, Dey N (2015) Biomedical image analysis and mining techniques for improved health outcomes. IGI Global, HersheyGoogle Scholar
  25. 25.
    Dash S, Subudhi B (2016) Handbook of research on computational intelligence applications in bioinformatics. IGI Global, HersheyCrossRefGoogle Scholar
  26. 26.
    Lytras MD, Papadopoulou P (2017) Applying big data analytics in bioinformatics and medicine. IGI Global, HersheyGoogle Scholar
  27. 27.
  28. 28.
    Demongeot J, Hazgui H (2016) The Poitiers school of mathematical and theoretical biology: Besson-Gavaudan-Schützenberger’s conjectures on genetic code and RNA structures. Acta Biotheor 64:403–426CrossRefGoogle Scholar
  29. 29.
    Demongeot J (2017) Proto-ribosome: a theoretical approach based on RNA relics. BioRxiv preprint. http://dx.doi.org/10.1101/182055
  30. 30.
    Demongeot J (2017) “Proto-ribosome” as new game of life. BioRxiv preprint. http://dx.doi.org/10.1101/182055
  31. 31.
    Ramírez-Gallego S, García S, Mouriño-Talín H, Martínez-Rego D, Bolón-Canedo V, Alonso-Betanzos A, Benítez JM, Herrera F (2016) Data discretization: taxonomy and big data challenge. WIREs Data Min Knowl Discov 6:5–21CrossRefGoogle Scholar
  32. 32.
    Boukharrou RR, Ilié JM, Saidouni DE (2017) Time and space reasoning for ambient systems. Int J Ambient Comput Intell 8:38–57CrossRefGoogle Scholar
  33. 33.
    Mhetre NA, Deshpande AV, Mahalle PN (2016) Trust management model based on fuzzy approach for ubiquitous computing. Int J Ambient Comput Intell 7:33–46CrossRefGoogle Scholar
  34. 34.
    Dey N, Ashour AS (2016) Classification and clustering in biomedical signal processing. IGI Global, HersheyCrossRefGoogle Scholar
  35. 35.
    Acharjya D, Anitha A (2017) A comparative study of statistical and rough computing models in predictive data analysis. Int J Ambient Comput Intell 8:32–51CrossRefGoogle Scholar
  36. 36.
    Sarwar KM, Dey N, Ashour AS (2017) Large scale medical data mining for accurate diagnosis: a blueprint. In: Khan S, Zomaya A, Abbas A (eds) Handbook of large-scale distributed computing in smart healthcare. Scalable computing and communications. Springer, Cham, pp 157–176Google Scholar
  37. 37.
    Singh A, Sharma A, Dey N (2015) Web recommendation techniques-status, issues and challenges. J Netw Commun Emerg Technol 5:57–65Google Scholar
  38. 38.
    Santhi V (2017) Recent advances in applied thermal imaging for industrial applications. IGI Global, HersheyCrossRefGoogle Scholar
  39. 39.
    Demongeot J, Hamie A, Glaria A, Taramasco C (2013) Dynalets: a new time-frequency representation of periodic biological signals and spectral data. In: IEEE AINA’ 13. IEEE Press, Piscataway, pp 1525–1532Google Scholar
  40. 40.
    Demongeot J, Hamie A, Hansen O, Franco C, Sutton B, Cohen EP (2014) Dynalets: a new method of modelling and compressing biological signals. Applications to physiological and molecular signals. CR Biol 337:609–624CrossRefGoogle Scholar
  41. 41.
    Demongeot J, Galli Carminati G, Carminati F, Rachdi M (2015) Stochastic monotony signature and biomedical applications. CR Biol 338:777–783CrossRefGoogle Scholar
  42. 42.
    Baconnier P, Benchetrit G, Demongeot J, Pham Dinh T (1984) Morphologie des Cycles Respiratoires: tentative de classification. In: Gallis JL (ed) Actes du IIIème Séminaire de Biologie Théorique. Publications University Bordeaux, Bordeaux, pp 87–102 (http://cat.inist.fr/?aModele=afficheN&cpsidt=9132966)
  43. 43.
    Benchetrit G, Shea SA, Pham Dinh T, Bodocco S, Baconnier P, Guz A (1989) Individuality of breathing patterns in adults assessed over time. Respir Physiol 75:199–210CrossRefGoogle Scholar
  44. 44.
  45. 45.
    Demongeot J, Hamie A, Laksaci A, Rachdi M (2016) Relative-error prediction in nonparametric functional statistics: theory and practice. J Multivar Anal 146:261–268CrossRefGoogle Scholar
  46. 46.
    Rachdi M, Laksaci A, Demongeot J, Abdali A, Madani F (2014) Theoretical and practical aspects of the quadratic error in the local linear estimation of the conditional density for functional data. Comput Stat Data Anal 73:53–68CrossRefGoogle Scholar
  47. 47.
    Preda C, Saporta G, Lévéder C (2007) PLS classification of functional data. Comput Statistics 22:223–235CrossRefGoogle Scholar
  48. 48.
  49. 49.
    Demongeot J, Virone G, Duchêne F, Benchetrit G, Hervé T, Noury N, Rialle V (2002) Multi-sensors acquisition, data fusion, knowledge mining and alarm triggering in health smart homes for elderly people. CR Biol 325:673–682CrossRefGoogle Scholar
  50. 50.
    Virone G, Noury N, Demongeot J (2002) A system for automatic measurement of circadian activity deviations in telemedicine. IEEE Trans Biomed Eng 49:1463–1469CrossRefGoogle Scholar
  51. 51.
    Rialle V, Duchêne F, Noury N, Bajolle L, Demongeot J (2002) Health ‘smart’ home: information technology for patients at home. Telemed J E-Health 8:395–409CrossRefGoogle Scholar
  52. 52.
    Le Bellego G, Noury N, Virone G, Mousseau M, Demongeot J (2006) A model for the measurement of patient activity in a hospital suite. IEEE Trans ITB 10:92–99Google Scholar
  53. 53.
    Vuillerme N, Chenu O, Pinsault N, Fleury A, Payan Y, Demongeot J (2008) Can a plantar pressure-based tongue-placed electrotactile biofeedback improve postural control under altered vestibular and neck proprioceptive conditions? Neuroscience 155:291–296CrossRefGoogle Scholar
  54. 54.
    Vuillerme N, Pinsault N, Fleury A, Chenu O, Demongeot J, Payan Y, Pavan P (2008) Effectiveness of an electro-tactile vestibular substitution system in improving upright postural control in unilateral vestibular-defective patients. Gait Posture 28:711–715CrossRefGoogle Scholar
  55. 55.
    Vuillerme N, Pinsault N, Chenu O, Fleury A, Payan Y, Demongeot J (2009) A wireless embedded tongue tactile biofeedback system for balance control. Pervasive Mobile Comput 5:268–275CrossRefGoogle Scholar
  56. 56.
    Chenu O, Payan Y, Hlavackova P, Demongeot J, Cannard F, Diot B, Vuillerme N (2012) Pressure sores prevention for paraplegic people: effects of visual, auditive and tactile supplementations on overpressures distribution in seated posture. Appl Bionic Biomech 9:61–67CrossRefGoogle Scholar
  57. 57.
    Fouquet Y, Franco C, Diot B, Demongeot J, Vuillerme N (2013) Estimation of task persistence parameter from pervasive medical systems with censored data. IEEE Trans Mobile Comput 12:633–646CrossRefGoogle Scholar
  58. 58.
    Guttmann A, Ouchchane L, Li X, Perthus I, Gaudart J, Demongeot J, Boire JY (2013) Performance map of a cluster detection test using the extended power. Int J Health Geogr 12:47CrossRefGoogle Scholar
  59. 59.
    Franco C, Fleury A, Guméry PY, Diot B, Demongeot J, Vuillerme N (2013) iBalance-ABF: a smartphone-based audio-biofeedback balance system. IEEE Trans Biomed Eng 60:211–215CrossRefGoogle Scholar
  60. 60.
    Diot B, Hlavackova P, Demongeot J, Vuillerme N (2014) Sensory substitution for balance control using a vestibular-to-tactile device. Multisens Res 27:313–336CrossRefGoogle Scholar
  61. 61.
    Rachdi M, Laksaci A, Demongeot J, Abdali A (2014) Theoretical and practical aspects on the quadratic error in the local linear estimation of the conditional density for functional data. Comput Stat Data Anal 73:53–68CrossRefGoogle Scholar
  62. 62.
    Demongeot J, Hansen O, Hamie A, Hazgui H, Virone G, Vuillerme N (2015) Actimetry@home: actimetric tele-surveillance and tailored to the signal data compression. In: ICOST’14, Lecture notes in computer science, vol 8456, pp 59–70Google Scholar
  63. 63.
    Demongeot J, Hamie A, Laksaci A, Rachdi M (2016) Relative-error prediction in nonparametric functional statistics: theory and practice. Journal of Multivariate Analysis 146:261–268CrossRefGoogle Scholar
  64. 64.
    Demongeot J, Laksaci A, Naceri A, Rachdi M (2017) Local linear regression modelization when all variables are curves. Stat Probab Lett 121:37–44CrossRefGoogle Scholar
  65. 65.
    Chan M, Campo E, Estève D, Fourniols JY (2009) Smart homes—current features and future perspectives. Maturitas 64:90–97CrossRefGoogle Scholar
  66. 66.
    Demiris G, Hensel BK (2008) Technologies for an aging society: a systematic review of “smart home” applications. Yearb Med Inform 3:33–40Google Scholar
  67. 67.
    Shults MC, Rhodes RK, Updike SJ, Gilligan BJ, Reining WN (1994) A telemetry instrumentation system for monitoring multiple subcutaneously implanted glucose sensors. IEEE Trans Biomed Eng 41(10):937–942CrossRefGoogle Scholar
  68. 68.
    Uchiyama A (1995) Endo-radioprobe needs micro machine technology. In: Proceedings of the 6th international symposium on micro machine and human science. IEEE Press, Piscataway, pp 31–37Google Scholar
  69. 69.
    Al-Taee MA, Al-Nuaimy W, Al-Ataby A, Muhsin ZJ, Abood SN (2015) Mobile health platform for diabetes management based on the Internet-of-Things. In: Applied electrical engineering and computing technologies (AEECT’15). IEEE Press, Piscataway, pp 1–5Google Scholar
  70. 70.
    Demongeot J, Noury N, Vuillerme N (2008) Data fusion for analysis of persistence in pervasive actimetry of elderly people at home. In: IEEE ARES-CISIS’ 08. IEEE Press, Piscataway, pp 589–594Google Scholar
  71. 71.
    Dittmar A, Axisa F, Delhomme G, Gehin C (2004) New concepts and technologies in home care and ambulatory monitoring. Stud Health Technol Inform 108:9–35Google Scholar
  72. 72.
  73. 73.
    Demongeot J, Elena A, Jelassi M, Ben Miled S, Bellamine Ben Saoud N, Taramasco C (2016) Smart homes: data fusion for preventive and therapy education at home; example of type II diabetes. Information 7:50CrossRefGoogle Scholar
  74. 74.
    Couturier P, Franco A, Piquart JF, Mansotte J, Montani C, Suarez C, Mollier A, Gucher C, Frossard M, Nicolas L, Jasso Mosqueda G, Mouchet MC, Argentier AM, Bosson JL, Carpentier P, Demongeot J (1996) “Telegerontology”: from teleassistance to teleconsultation of elderly people. Mythe or reality? Rev Gériatrie 21:23–31Google Scholar
  75. 75.
    Moreau-Gaudry A, Robineau F, André PF, Prince A, Pauget P, Demongeot J, Payan Y (2006) Utilisation de la substitution sensorielle par électrostimulation linguale pour la prévention des escarres chez les paraplégiques. Etude préliminaire. L’escarre 30:24–37Google Scholar
  76. 76.
    Vazquez-Buenos Aires J, Payan Y, Demongeot J (2003) Electrostimulation of the tongue as a passive surgical guiding system. In: de Almeida AT, Nunes U (eds) ICAR’03. IEEE Press, Piscataway, pp 638–643Google Scholar
  77. 77.
    Tassicker GE (1956) Preliminary report on a retinal stimulator. Br. J. Physiol. Opt. 12:102–105Google Scholar
  78. 78.
    Starkiewicz W, Kuliszewski W (1963) The 80-channel elektroftalm. In: Proceedings of the lnternational congress technology blindness. The American Foundation Blindness, New YorkGoogle Scholar
  79. 79.
    Konarzewski T (1992) 100-lecie elektroftalmu. Arch Hist Filoz Med 55:95–99Google Scholar
  80. 80.
    Visell Y (2009) Tactile sensory substitution: models for enaction in HCI. Interact Comput 21:38–53CrossRefGoogle Scholar
  81. 81.
    Szkaradek M, Futyma-Ziaja M, Lewicka-Chomont A, Rejdak R (2014) A technology that enables to restore visual function. e-Polish J Vet Ophtalmol. Okulistyka 3Google Scholar
  82. 82.
    Fournier d’Albe EEF (1914) On a type-reading optophone. Proc Roy Soc A Math Phys Eng Sci 90(619):373–375CrossRefGoogle Scholar
  83. 83.
    Samsó Dies JM, Vila Bado J, Torres de Gasso JM (1962) Acoustic sensory prosthesis for tactile stimulation. Animal experimentation. Plan and possibilities of the same. Med Clin 39:363–373Google Scholar
  84. 84.
    Samsó Dies JM, Vila Bado J, Torres de Gasso JM (1965) Possibilités d’une prothèse sensorielle acoustique par stimulation tactile cybernetics of the nervous system. In: Wiener N, Schadé N (eds) Progress in brain research, vol 17. Elsevier, Amsterdam, pp 169–178Google Scholar
  85. 85.
    Bach-y-Rita P, Collins CC, Saunders FA, White B, Scadden L (1969) Vision substitution by tactile image projection. Nature 221:963–964CrossRefGoogle Scholar
  86. 86.
  87. 87.
  88. 88.
    Aud MA, Abbott CC, Tyrer HW, Neelgund RV, Shriniwar UG, Mohammed A, Devarakonda KK (2010) Smart carpet: developing a sensor system to detect falls and summon assistance. J Gerontol Nurs 36:8–12CrossRefGoogle Scholar
  89. 89.
    Tanaka O, Ryu T, Hayashida A, Moshnyaga VG, Hashimoto K (2014) A smart carpet design for monitoring people with dementia. Prog Syst Eng 330:653–659Google Scholar
  90. 90.
    Andries M, Charpillet F, Simonin O (2015) High resolution pressure sensing using sub-pixel shifts on low resolution load-sensing tiles. In: ICRA’15. IEEE Press, Piscataway, pp 3890–3895Google Scholar
  91. 91.
    Demongeot J, Jelassi M, Hazgui H, Ben Miled S, Bellamine Ben Saoud N, Taramasco C (2018) Biological networks entropies: examples in neural memory networks, genetic regulation networks and social epidemic networks. Entropy 20:36CrossRefGoogle Scholar
  92. 92.
    Bourdessol H, Pin S (2008) Practice guide prevention of falls in the elderly living at home. INPES, ParisGoogle Scholar
  93. 93.
    Guettari T (2014) Détection de présence humaine et évaluation de la qualité du sommeil en établissement d’hébergement pour personnes âgées dépendantes (EHPAD). Télécom Sud Paris Ph.D. thesis, ParisGoogle Scholar
  94. 94.
    Cavalcante Aguilar PA, Boudy J, Istrate D, Dorizzi B, Moura Mota IC (2014) A dynamic evidential network for fall detection. IEEE J Biomed Health Inform 18:1103–1113CrossRefGoogle Scholar
  95. 95.
  96. 96.
  97. 97.
    Levitzky MG (2008) Using the pathophysiology of obstructive sleep apnea to teach cardiopulmonary integration. Adv Physiol Educ 32:196–202CrossRefGoogle Scholar
  98. 98.
    Demongeot J, Demetrius L (2015) Complexity and stability in biological systems. Int J Bifurcat Chaos 25:40013CrossRefGoogle Scholar
  99. 99.
    Demongeot J, Bezy-Wendling J, Mattes J, Haigron P, Glade N, Coatrieux JL (2003) Multiscale modeling and imaging: the challenges of biocomplexity. In: Proceedings of the IEEE society, vol 91, pp 1723–1737CrossRefGoogle Scholar
  100. 100.
    Jelassi M (2017) Modélisation, simulation et analyse multiéchelle de réseaux sociaux complexes: Application à l’aide à la prévention des maladies contagieuses. Ph.D. Thesis. University Grenoble Alpes, GrenobleGoogle Scholar
  101. 101.
    Mall R, Rawi R, Ullah E, Kunji K, Khadir A, Tiss A, Abubaker J, Dehbi M, Bensmail H (2017) Application of high-dimensional statistics and network based visualization techniques on arab diabetes and obesity data. BioRxiv preprint. http://dx.doi.org/10.1101/151621
  102. 102.
    Demongeot J, Jelassi M, Taramasco C (2017) From susceptibility to frailty in social networks: the case of obesity. Math Pop Stud 24:219–245CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.AGEIS, EA 7407, Faculty of MedicineUniversity Grenoble AlpesLa TroncheFrance
  2. 2.RIADINational Engineering School of Computer Sciences, Manouba UniversityManoubaTunisia
  3. 3.Escuela de Ingeniería Civil en InformáticaUniversidad de ValparaísoValparaísoChile

Personalised recommendations