Advertisement

Nanooncology pp 305-340 | Cite as

Porous Silicon Particles for Cancer Therapy and Bioimaging

  • Steven J. P. McInnes
  • Abel Santos
  • Tushar Kumeria
Chapter
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)

Abstract

Porous silicon (pSi) engineered by electrochemical etching of silicon has been explored as a drug delivery carrier with the aim of overcoming the limitations of traditional therapies and medical treatments. pSi is biodegradable, non-cytotoxic and has optoelectronic properties that make this platform material a unique candidate for developing biomaterials for drug delivery and theranostics therapies. pSi provides new opportunities to improve existing therapies in different areas, paving the way for developing advanced theranostic nanomedicines, incorporating payloads of therapeutics with imaging capabilities. However, despite these outstanding advances, more extensive in-vivo studies are needed to assess the feasibility and reliability of this technology for real clinical practice. In this Chapter, we present an updated overview about the recent therapeutic systems based on pSi, with a critical analysis on the problems and opportunities that this technology faces as well as highlighting the growing potential of pSi technolgy.

Keywords

Porous silicon Drug delivery Theranostics Therapy Toxicity 

References

  1. 1.
    Rosen H, Abribat T (2005) The rise and rise of drug delivery. Nat Rev Drug Discov 4:381–385CrossRefGoogle Scholar
  2. 2.
    Hoffman AS (2008) The origins and evolution of “controlled” drug delivery systems. J Controlled Release 132:153–163CrossRefGoogle Scholar
  3. 3.
    Park K (2014) Controlled drug delivery systems: past forward and future back. J Controlled Release 190:3–8CrossRefGoogle Scholar
  4. 4.
    Mitragotri S, Burke PA, Langer R (2014) Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov 13:655–672CrossRefGoogle Scholar
  5. 5.
    LaVan DA, Lynn DM, Langer R (2002) Moving smaller in drug discovery and delivery. Nat Rev Drug Discov 1:77–84CrossRefGoogle Scholar
  6. 6.
    Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171CrossRefGoogle Scholar
  7. 7.
    Santini JTJ, Richards AC, Scheidt R, Cima MJ, Langer R (2000) Microchips as controlled drug-delivery devices. Angew Chem Int Ed 39:2396–2407CrossRefGoogle Scholar
  8. 8.
    Kelkar SS, Reineke TM (2011) Theranostics: combining imaging and therapy. Bioconjug Chem 22:1879–1903CrossRefGoogle Scholar
  9. 9.
    Mann AP, Scodeller P, Hussain S. Joo J, Kwon E, Braun GB, Mölder T, She ZG, Ramana Kotamraju V, Ranscht B, Krajewski S, Teesalu T, Bhatia S, Sailor MJ, Ruoslahti E (2016) A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries. Nat Comm 7:11980-1–11980-11CrossRefGoogle Scholar
  10. 10.
    Lanza GM (2015) From micro to nano in seconds. Nat Nanotechnol 10:301–302CrossRefGoogle Scholar
  11. 11.
    Svenson S (2013) Theranostics: are we there yet? Mol Pharm 10:848–856CrossRefGoogle Scholar
  12. 12.
    Uhlir A (1956) Electrolytic shaping of germanium and silicon. Bell Syst Tech J 35(2):333–347CrossRefGoogle Scholar
  13. 13.
    Lehmann V (2002) Electrochemistry of silicon. Wiley-VCHGoogle Scholar
  14. 14.
    Sailor MJ (2012) Porous silicon in practice: preparation, characterization and applications. Wiley-VCHGoogle Scholar
  15. 15.
    Canham LT (2014) Handbook of porous silicon. Springer International Publishing, BerlinCrossRefGoogle Scholar
  16. 16.
    Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57(10):1046–1048CrossRefGoogle Scholar
  17. 17.
    Lehmann V, Gösele U (1991) Porous silicon formation: a quantum wire effect. Appl Phys Lett 58:856–858CrossRefGoogle Scholar
  18. 18.
    Canham LT (1995) Bioactive silicon structure fabrication through nanoetching techniques. Adv Mater 7(12):1033–1037CrossRefGoogle Scholar
  19. 19.
    Canham LT, Reeves CL, King DO, Branfield PJ, Crabb JG, Ward MC (1996) Bioactive polycrystalline silicon. Adv Mater 8(10):850–852CrossRefGoogle Scholar
  20. 20.
    Prestidge CA, Barnes TJ, Lau CH, Barnett C, Loni A, Canham LT (2007) Mesoporous silicon: a platform for the delivery of therapeutics. Expert Opin Drug Deliv 4:101–110CrossRefGoogle Scholar
  21. 21.
    Salonen J, Kaukonen AM, Hirvonen J, Lehto VP (2008) Mesoporous silicon in drug delivery applications. J Pharm Sci 97(2):632–653CrossRefGoogle Scholar
  22. 22.
    Anglin EJ, Cheng L, Freeman WR, Sailor MJ (2008) Porous silicon in drug delivery devices and materials. Adv Drug Deliv Rev 60:1266–1277CrossRefGoogle Scholar
  23. 23.
    Gu L, Hall DJ, Qin Z, Anglin E, Joo J, Mooney DJ, Howell SB, Sailor MJ (2013) In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nat Comm 4:2326CrossRefGoogle Scholar
  24. 24.
    Secret E, Maynadier M, Gallud A, Chaix A, Bouffard E, Gary-Bobo M, Marcotte N, Mongin O, El Cheikh K, Hugues V, Auffan M, Frochot C, Morère A, Maillard P, Blanchard-Desce M, Sailor MJ, Garcia M, Durand JO, Cunin F (2014) Two-photon excitation of porphyrin-functionalized porous silicon nanoparticles for photodynamic therapy. Adv Mater 26:7643–7648CrossRefGoogle Scholar
  25. 25.
    Joo J, Liu X, Ramana Kotamraju V, Ruoslahti E, Nam Y, Sailor MJ (2015) Gated luminescence imaging of silicon nanoparticles. ACS Nano 9:6233–6241CrossRefGoogle Scholar
  26. 26.
    Ledford H (2016) Bankruptcy of nanomedicine firm worries drug developers. Nature 533:304–305CrossRefGoogle Scholar
  27. 27.
    Santini JTJ, Cima MJ, Langer R (1999) A controlled-release microchip. Nature 397:335–338CrossRefGoogle Scholar
  28. 28.
    Staples M, Daniel K, Cima MJ, Langer R (2006) Application of micro- and nano-electromechanical devices to drug delivery. Pharm Res 23:847–863CrossRefGoogle Scholar
  29. 29.
    Nan K, Ma F, Hou H, Freeman WR, Sailor MJ, Cheng L (2014) Porous silicon oxide-plga composite microspheres for sustained ocular delivery of daunorubicin. Acta Biomater 10:3505–3512CrossRefGoogle Scholar
  30. 30.
    Nieto A, Hou H, Sailor MJ, Freeman WR, Cheng L (2013) Ocular silicon distribution and clearance following intravitreal injection of porous silicon microparticles. Exp Eye Res 116:161–168CrossRefGoogle Scholar
  31. 31.
    Wu EC, Andrew JS, Cheng L, Freeman WR, Pearson L, Sailor MJ (2011) Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles. Biomaterials 32:1957–1966CrossRefGoogle Scholar
  32. 32.
    Chhablani J, Nieto A, Hou HY, Wu EC, Freeman WR, Sailor MJ, Cheng L (2013) Oxidized porous silicon particles covalently grafted with daunorubicin as a sustained intraocular drug delivery system. Invest Ophthalmol Vis Sci 54:1268–1279CrossRefGoogle Scholar
  33. 33.
    Hartmann KI, Nieto A, Wu EC, Freeman WR, Kim JS, Chhablani J, Sailor MJ, Cheng L (2013) Hydrosilylated porous silicon particles function as an intravitreal drug delivery system for daunorubicin. J Ocul Pharmacol Ther 29:493–500CrossRefGoogle Scholar
  34. 34.
    Cheng L, Anglin EJ, Cunin F, Kim D, Sailor MJ, Falkenstein I, Tammewar A, Freeman WR (2008) Intravitreal properties of porous silicon photonic crystals: a potential self-reporting intraocular drug-delivery vehicle. Br J Ophthalmol 92:705–711CrossRefGoogle Scholar
  35. 35.
    Huang Z, Geyer N, Werner P, de Boor J, Gösele U (2011) Metal-assisted chemical etching of silicon: a review. Adv Mater 23:285–308CrossRefGoogle Scholar
  36. 36.
    Huang Z, Shimizu T, Senz S, Zhang Z, Geyer N, Gösele U (2010) Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon. J Phys Chem C 114:10683–10690CrossRefGoogle Scholar
  37. 37.
    Huang ZP, Shimizu T, Senz S, Zhang Z, Zhang XX, Lee W, Geyer N, Gösele U (2009) Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions. Nano Lett 9:2519–2525CrossRefGoogle Scholar
  38. 38.
    Schmidt V, Senz S, Gösele U (2005) Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett 5:931–935CrossRefGoogle Scholar
  39. 39.
    Choi WK, Liew TH, Dawood MK (2008) Synthesis of silicon nanowires and nanofin arrays using interference lithography and catalytic etching. Nano Lett 8:3799–3802CrossRefGoogle Scholar
  40. 40.
    de Boor J, Geyer N, Wittemann JV, Gösele U, Schmidt V (2010) Sub-100 Nm silicon nanowires by laser interference lithography and metal-assisted etching. Nanotechnology 21:095302–1–095302-5Google Scholar
  41. 41.
    Myrhaug EH, Tveit H (2000) Material balances of trace elements in the ferrosilicon and silicon processes. In: Electric furnace conference, WarrendaleGoogle Scholar
  42. 42.
    Lui N, Huo K, MacDowell MT, Zhao J, Cui Y (2013) Rice husks as a sustainable source of nanostructured silicon for high performance Li-Ion battery anodes. Sci Rep 3:1919-1–1919-7Google Scholar
  43. 43.
    Kim KH, Lee DJ, Cho KM, Kim SJ, Park JK, Jung HT (2015) Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles. Sci Rep 5:9014-1–9014-7Google Scholar
  44. 44.
    Bao Z, Weatherspoon MR, Shian S, Cai Y, Graham PD, Allan SM, Ahmad G, Dickerson MB, Church BC, Kang Z, Abernathy HW, Summers CJ, Liu M, Sandhage KH (2007) Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 446:172–175CrossRefGoogle Scholar
  45. 45.
    Watanabe Y, Sakai T (1971) Application of a thick anode film to semiconductor devices. Rev Electr Commun Lab 19:899–903Google Scholar
  46. 46.
    Dimova-Malinovska D, Sendova-Vassileva M, Tzenov N, Kamenova M (1997) Preparation of thin porous silicon layers by stain etching. Thin Solid Films 297:9–12CrossRefGoogle Scholar
  47. 47.
    Li X, Bohn PW (2000) Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl Phys Lett 77:2572–2574CrossRefGoogle Scholar
  48. 48.
    Tsujino K, Matsumura M (2005) Helical nanoholes bored in silicon by wet chemical etching using platinum nanoparticles as catalyst. Electrochem Solid State Lett 8:C193–C195CrossRefGoogle Scholar
  49. 49.
    Chartier C, Bastide S, Levy-Clement C (2008) Metal-assisted chemical etching of silicon in HF-H2O. Electrochim. Acta 53:5509–5516CrossRefGoogle Scholar
  50. 50.
    Peng K, Lu A, Zhang R, Lee ST (2008) Motility of metal nanoparticles in silicon and induced anisotropic silicon etching. Adv Funct Mater 18:3026–3035CrossRefGoogle Scholar
  51. 51.
    Zhang ML, Peng KQ, Fan X, Jie JS, Zhang RQ, Lee ST, Wong NB (2008) Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. J Phys Chem C 112:4444–4450CrossRefGoogle Scholar
  52. 52.
    Harada Y, Li XL, Bohn PW, Nuzzo RG (2001) Catalytic amplification of the soft lithographic patterning of Si. Nonelectrochemical orthogonal fabrication of photoluminescent porous Si pixel arrays. J Am Chem Soc 123:8709–8717CrossRefGoogle Scholar
  53. 53.
    Peng KQ, Yan YJ, Gao SP, Zhu J (2003) Dendrite-assisted growth of silicon nanowires in electroless metal deposition. Adv Funct Mater 13:127–132CrossRefGoogle Scholar
  54. 54.
    Kooij ES, Butter K, Kelly JJ (1999) Silicon Etching in HNO3/Hf solution: charge balance for the oxidation reaction. Electrochem Solid State Lett 2:178–180CrossRefGoogle Scholar
  55. 55.
    Turner DR (1960) On the mechanism of chemically etching germanium and silicon. J Electrochem Soc 107:810–816CrossRefGoogle Scholar
  56. 56.
    Hadjersi T, Gabouze N, Kooij ES, Zinine A, Ababou A, Chergui W, Cheraga H, Belhousse S, Djeghri A (2004) Metal-assisted chemical etching in HF/Na2S2O8 or HF/KMnO4 produces porous silicon. Thin Solid Films 459:271–275CrossRefGoogle Scholar
  57. 57.
    Cruz S, Honig-dOrville A, Muller J (2005) Fabrication and optimization of porous silicon substrates for diffusion membrane applications. J Electrochem Soc 152:C418–C424CrossRefGoogle Scholar
  58. 58.
    Tsujino K, Matsumura M (2005) Boring deep cylindrical nanoholes in silicon using silver nanoparticles as a catalyst. Adv Mater 17:1045–1047CrossRefGoogle Scholar
  59. 59.
    Yoo JK, Kim J, Jung YS, Kang K (2012) Scalable fabrication of silicon nanotubes and their application to energy storage. Adv Mater 24:5452–5456CrossRefGoogle Scholar
  60. 60.
    Yi R, Dai F, Gordin ML, Chen S, Wang D (2013) Micro-sized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries. Adv Energy Mater 3:295–300CrossRefGoogle Scholar
  61. 61.
    Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G (2010) High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat Mater 9:353–358CrossRefGoogle Scholar
  62. 62.
    Maher S, Alsawat M, Kumeria T, Fathalla D, Gihan F, Santos A, Fawzia H, Losic D (2015) Luminescent silicon diatom replicas: self-reporting and degradable drug carriers with biologically derived shape for sustained delivery of therapeutics. Adv Funct Mater 25:5107–5116CrossRefGoogle Scholar
  63. 63.
    Sun W, Puzas JE, Sheu T, Liu X, Fauchet PM (2007) Nano- to microscale porous silicon as a cell interface for bone-tissue engineering. Adv Mater 19:921–924CrossRefGoogle Scholar
  64. 64.
    Asoh H, Sakamoto S, Ono S (2007) Metal patterning on silicon surface by site-selective electroless deposition through colloidal crystal templating. J Colloid Interface Sci 316:547–552CrossRefGoogle Scholar
  65. 65.
    Ono S, Oide A, Asoh H (2007) Nanopatterning of silicon with use of self-organized porous alumina and colloidal crystals as mask. Electrochim Acta 52:2898–2904CrossRefGoogle Scholar
  66. 66.
    Cozzi C, Polito G, Strambinin LM, Barillaro G (2016) Electrochemical preparation of in-silicon hierarchical networks of regular out-of-plane macropores interconnected by secondary in-plane pores through controlled inhibition of breakdown effects. Electrochim Acta 187:552–559CrossRefGoogle Scholar
  67. 67.
    Shahbazi M-A, Hamidi M, Mäkilä EM, Zhang H, Almeida PV, Kaasalainen M, Salonen JJ, Hirvonen JT, Santos HA (2013) The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility. Biomaterials 34(31):7776–7789CrossRefGoogle Scholar
  68. 68.
    Park J-H, Gu L, Von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent Porous silicon nanoparticles for in vivo applications. Nat Mater 8(4):331–336CrossRefGoogle Scholar
  69. 69.
    Linford MR, Chidsey CED (1993) Alkyl monolayers covalently bonded to silicon surfaces. J Am Chem Soc 115:12631–12632CrossRefGoogle Scholar
  70. 70.
    Ciampi S, Harper JB, Gooding JJ (2010) Wet chemical routes to the assembly of organic monolayers on silicon surfaces via the formation of Si–C bonds: surface preparation, passivation and functionalization. Chem Soc Rev 39:2158–2183CrossRefGoogle Scholar
  71. 71.
    Salonen J, Laine E, Niinisto L (2002) Thermal carbonization of porous silicon surface by acetylene. J Appl Phys 91:456–461CrossRefGoogle Scholar
  72. 72.
    Jarvis KL, Barnes TJ, Prestidge CA (2012) Surface chemistry of porous silicon and implications for drug encapsulation and delivery applications. Adv Colloid Interface Sci 175:25–38CrossRefGoogle Scholar
  73. 73.
    Harraz FA (2014) Porous silicon chemical sensors and biosensors: a review. Sensor Actuat B: Chem 202:897–912CrossRefGoogle Scholar
  74. 74.
    Jamois C, Wehrspohn RB, Schilling J, Müller F, Hillebrand R, Hergert W (2002) Silicon-based photonic crystals slabs: two concepts. IEEE J Quantum Electron 38:805–810CrossRefGoogle Scholar
  75. 75.
    Hillebrand R, Jamois C, Schilling J, Wehrspohn RB, Hergert W (2003) Computation of optical properties of Si-based photonic crystals with varying pore diameters. Phys Stat Solidi B 240:124–133CrossRefGoogle Scholar
  76. 76.
    Müller F, Birner A, Gösele U, Lehmann V, Ottow S, Föll H (2000) Structuring of macroporous silicon for applications as photonic crystals. J Porous Mater 7:201–204CrossRefGoogle Scholar
  77. 77.
    Schilling J, Wehrspohn RB, Birner A, Müller F, Hillebrand R, Gösele U, Leonard SW, Mondia JP, Genereux F, Van Driel HM, Kramper P, Sandoghdar V, Busch K (2001) A model system for two-dimensional and three-dimensional photonic crystals: macroporous silicon. J Opt A: Pure Appl Opt 3:S121–S132CrossRefGoogle Scholar
  78. 78.
    Birner A, Wehrspohn RB, Gösele U, Bursch K (2001) Silicon-based photonic crystals. Adv Mater 13:377–388CrossRefGoogle Scholar
  79. 79.
    Ottow S, Lehmann V, Föll H (1996) Processing of three-dimensional microstructures using macroporous N-type silicon. J Electrochem Soc 143:385–390CrossRefGoogle Scholar
  80. 80.
    von Freymann G, Koch W, Meisel DC, Wegener M, Diem M, García-Martín A, Pereira S, Busch K, Schilling J, Wehrspohn RB, Gösele U (2003) Diffraction Properties of two-dimensional photonic crystals. Appl Phys Lett 83:614–616CrossRefGoogle Scholar
  81. 81.
    Pickering C, Beale MIJ, Robbins DJ, Pearson PJ, Greef R (1984) Optical Studies of the Structure of porous silicon films formed in P-type degenerate and non-degenerate silicon. J Phys C 17:6535–6552CrossRefGoogle Scholar
  82. 82.
    Irani YD, Klebe S, McInnes SJP, Jasieniak M, Voelcker NH, Williams KA (2017) Oral mucosal epithelial cells grown on porous silicon membrane for transfer to the rat eye. Sci Rep 7:10042–1–10042-11CrossRefGoogle Scholar
  83. 83.
    Link J, Sailor M (2003) Smart dust: self-assembling, self-orienting photonic crystals of porous Si. PNAS 100:10607–10610CrossRefGoogle Scholar
  84. 84.
    Donato MG, Monaca MA, Faggio G, Stefano LD, Jones PH, Gucciardi PG, Marago OM (2011) Optical trapping of porous silicon nanoparticles. Nanotechnology 22:505704–1–505704-8CrossRefGoogle Scholar
  85. 85.
    McInnes SJP, Michl TD, Delalat B, Al-Bataineh SA, Coad BR, Vasilev K, Griesser HJ, Voelcker NH (2016) “Thunderstruck”: plasma-polymer-coated porous silicon microparticles as a controlled drug delivery system. ACS Appl Mater Interfaces 8:4467–4476CrossRefGoogle Scholar
  86. 86.
    Turner CT, McInnes SJP, Melville E, Cowin AJ, Voelcker NH (2016) Delivery of flightless I neutralizing antibody from porous silicon nanoparticles improves wound healing in diabetic mice. Adv Healthc Mater 6:1600707-1–1600707-13Google Scholar
  87. 87.
    Ciampi S, Böcking T, Kilian KA, Harper JB, Gooding JJ (2008) Click chemistry in mesoporous materials: functionalization of porous silicon rugate filters. Langmuir 24(11):5888–5892CrossRefGoogle Scholar
  88. 88.
    Sweetman MJ, Shearer CJ, Shapter JG, Voelcker NH (2011) dual silane surface functionalization for the selective attachment of human neuronal cells to porous silicon. Langmuir 27(15):9497–9503CrossRefGoogle Scholar
  89. 89.
    Coffer JL (2014) Porous silicon and related composites as functional tissue engineering scaffolds. In: Santos HA (ed) Porous silicon for biomedical applications. Woodhead, CambridgeCrossRefGoogle Scholar
  90. 90.
    Kilian KA, Bocking T, Gaus K, Gooding JJ (2008) Introducing distinctly different chemical functionalities onto the internal and external surfaces of mesoporous materials. Angew Chem Int Ed 47:2697–2699CrossRefGoogle Scholar
  91. 91.
    Wu C-C, Sailor MJ (2013) Selective functionalization of the internal and the external surfaces of mesoporous silicon by liquid masking. ACS Nano 7:3158–3167CrossRefGoogle Scholar
  92. 92.
    Song J, Sailor MJ (1999) Chemical modification of crystalline porous silicon surfaces. Comment Inorg Chem 21:69–84CrossRefGoogle Scholar
  93. 93.
    Lai M, Parish G, Dell J, Liu Y, Keating A (2011) Chemical resistance of porous silicon: photolithographic applications. Phys Stat Sol C 8:1847–1850CrossRefGoogle Scholar
  94. 94.
    Lai M, Parish G, Liu Y, Dell JM, Keating AJ (2011) Development of an alkaline-compatible porous-silicon photolithographic process. J Microelectromech Syst 20:418–423CrossRefGoogle Scholar
  95. 95.
    James TD, Keating A, Parish G, Musca CA (2009) Low temperature N2-based passivation technique for porous silicon thin films. Solid State Commun 149:1322–1325CrossRefGoogle Scholar
  96. 96.
    Salonen J, Bjorkqvist M, Laine E, Niinisto L (2004) Stabilization of porous silicon surface by thermal decomposition of acetylene. Appl Surf Sci 225:389–394CrossRefGoogle Scholar
  97. 97.
    Salonen J, Lehto V-P, Bjorkqvist M, Laine E, Niinisto L (2000) Studies of thermally-carbonized porous silicon surfaces. Phys Stat Sol A 182:123–126CrossRefGoogle Scholar
  98. 98.
    Bateman J, Eagling R, Worrall D, Horrocks B, Houlton A (1998) Alkylation of porous silicon by direct reaction with alkenes and alkynes. Angew Chem Int Ed 37:2638–2685CrossRefGoogle Scholar
  99. 99.
    Kim N, Laibinis P (1998) Derivatization of porous silicon by grignard reagents at room temperature. J Am Chem Soc 120:4516–4517CrossRefGoogle Scholar
  100. 100.
    Buriak JM, Stewart MP, Geders TW, Allen MJ, Choi HC, Smith J, Raftery D, Canham LT (1999) Lewis acid mediated hydrosilylation on porous silicon surfaces. J Am Chem Soc 121:11491–11502CrossRefGoogle Scholar
  101. 101.
    Stewart MP, Buriak JM (1998) Photopatterned hydrosilylation on porous silicon. Angew Chem Int Ed 37:3257–3260CrossRefGoogle Scholar
  102. 102.
    Sweetman MJ, Ronci M, Ghaemi SR, Craig JE, Voelcker NH (2012) porous silicon films micropatterned with bioelements as supports for mammalian cells. Adv Funct Mater 22:1158–1166CrossRefGoogle Scholar
  103. 103.
    Lees I, Lin H, Canaria C, Gurtner C, Sailor M, Miskelly G (2003) Chemical stability of porous silicon surfaces electrochemically modified with functional alkyl species. Langmuir 19:9812–9817CrossRefGoogle Scholar
  104. 104.
    Boukherroub R, Petit A, Loupy A, Chazalviel J-N, Ozanam F (2003) Microwave-Assisted chemical functionalization of hydrogen-terminated porous silicon surfaces. J Phys Chem B 107:13459–13462CrossRefGoogle Scholar
  105. 105.
    Sweetman MJ, McInnes SJP, Vasani RB, Guinan T, Blencowe A, Voelcker NH (2015) Rapid, metal-free hydrosilanisation chemistry for porous silicon surface modification. Chem Commun 51:10640–10643CrossRefGoogle Scholar
  106. 106.
    Stewart MP, Buriak JM (2000) Chemical and biological applications of porous silicon technology. Adv Mater 12:859–869CrossRefGoogle Scholar
  107. 107.
    Low SP, Williams KA, Canham LT, Voelcker NH (2006) Evaluation of mammalian cell adhesion on surface-modified porous silicon. Biomaterials 27(26):4538–4546CrossRefGoogle Scholar
  108. 108.
    Lowe RD, Szili EJ, Kirkbride P, Thissen H, Siuzdak G, Voelcker NH (2010) Combined immunocapture and laser desorption/ionization mass spectrometry on porous silicon. Anal Chem 82:4201–4208CrossRefGoogle Scholar
  109. 109.
    Vasani RB, McInnes SJP, Cole MA, Jani AMM, Ellis AV, Voelcker NH (2011) Stimulus-Responsiveness and Drug Release from Porous Silicon Films ATRP-Grafted with Poly(N-Isopropylacrylamide). Langmuir 27:7843–7853CrossRefGoogle Scholar
  110. 110.
    McInnes SJP, Lowe RD (2015) Biomedical uses of porous silicon. In: Losic D, Santos A (eds) Electrochemically engineered nanoporous materials. Springer, Switzerland 117–162 (Chapter 5)CrossRefGoogle Scholar
  111. 111.
    Salonen J, Lehto V-P (2008) Fabrication and chemical surface modification of mesoporous silicon for biomedical applications. Chem Eng J 137:162–172CrossRefGoogle Scholar
  112. 112.
    Clements LR, Wang P-Y, Harding F, Tsai W-B, Thissen H, Voelcker NH (2010) Mesenchymal stem cell attachment to peptide density gradients on porous silicon generated by electrografting. Phys Stat Solidi A 208:1440–1445CrossRefGoogle Scholar
  113. 113.
    Clements LR, Wang PY, Harding F, Tsai WB, Thissen H, Voelcker NH (2011) Mesenchymal stem cell attachment to peptide density gradients on porous silicon generated by electrografting. Phys Stat Solidi A 208(6):1440–1445CrossRefGoogle Scholar
  114. 114.
    Dancil K-PS, Greiner DP, Sailor MJ (1999) A porous silicon optical biosensor: detection of reversible binding of igg to a protein a-modified surface. J Am Chem Soc 121(34):7925–7930CrossRefGoogle Scholar
  115. 115.
    Lin V, Motesharei K, Dancil K, Sailor MJ, Ghadiri MR (1997) A porous silicon-based optical interferometric biosensor. Science 278:840–843CrossRefGoogle Scholar
  116. 116.
    Hart BR, Létant SE, Kane SR, Hadi MZ, Shields SJ, Reynolds JG (2003) New method for attachment of biomolecules to porous silicon. Chem Commun 3:322–323CrossRefGoogle Scholar
  117. 117.
    Drott J, Lindstrom K, Rosengren L, Laurell T (1997) Porous silicon as the carrier matrix in microstructured enzyme reactors yielding high enzyme activities. J Micromech Microeng 7:14–23CrossRefGoogle Scholar
  118. 118.
    Secret E, Smith K, Dubljevic V, Moore E, Macardle P, Delalat B, Rogers M-L, Johns TG, Durand J-O, Cunin F, Voelcker NH (2013) Antibody-functionalized porous silicon nanoparticles for vectorization of hydrophobic drugs. Adv Healthc Mater 2:718–727CrossRefGoogle Scholar
  119. 119.
    Guan B, Magenau A, Ciampi S, Gaus K, Reece PJ, Gooding JJ (2014) Antibody modified porous silicon microparticles for the selective capture of CELLS. Bioconjug Chem 25:1282–1289CrossRefGoogle Scholar
  120. 120.
    Holthausen D, Vasani RB, McInnes SJP, Ellis AV, Voelcker NH (2012) Polymerization-amplified optical DNA detection on porous silicon templates. ACS Macro Lett 1:919–921CrossRefGoogle Scholar
  121. 121.
    McInnes SJP, Voelcker NH (2012) Porous silicon-based nanostructured microparticles as degradable supports for solid-phase synthesis and release of oligonucleotides. Nanoscale Res Lett 7:1–10CrossRefGoogle Scholar
  122. 122.
    Shtenberg G, Massad-Ivanir N, Engin S, Sharon M, Fruk L, Segal E (2012) DNA-directed immobilization of horseradish peroxidase onto porous SiO2 optical transducers. Nanoscale Res Lett 7:443–448CrossRefGoogle Scholar
  123. 123.
    Letant SE, Hart BR, Kane SR, Hadi MZ, Shields SJ, Reynolds JG (2004) Enzyme immobilization on porous silicon surfaces. Adv Mater 16:689–693CrossRefGoogle Scholar
  124. 124.
    Hermanson GT (2008) Bioconjugate techniques. Elsevier, San FransiscoGoogle Scholar
  125. 125.
    Pike A, Patole S, Murray N, Ilyas T, Connolly B, Horrocks B, Houlton A (2003) Covalent and non-covalent attachment and patterning of polypyrrole at silicon surfaces. Adv Mater 15:254–257CrossRefGoogle Scholar
  126. 126.
    Yoon MS, Ahn KH, Cheung RW, Sohn H, Link JR, Cunin F, Sailor MJ (2003) Covalent crosslinking of 1-D photonic crystals of microporous Si by hydrosilylation and ring-opening metathesis polymerization. Chem Commun 6:680–681CrossRefGoogle Scholar
  127. 127.
    McInnes SJP, Thissen H, Choudhury NR, Voelcker NH (2009) New Biodegradable materials produced by ring opening polymerisation of poly(L-lactide) on porous silicon substrates. J Colloid Interface Sci 332:336–344CrossRefGoogle Scholar
  128. 128.
    McInnes SJP, Szili EJ, Al-Bataineh SA, Xu J, Alf ME, Gleason KK, Short RD, Voelcker NH (2012) Combination of iCVD and porous silicon for the development of a controlled drug delivery system. ACS Appl Mater Interfaces 4:3566–3574CrossRefGoogle Scholar
  129. 129.
    McInnes SJP, Szili EJ, Al-Bataineh SA, Vasani RB, Xu J, Alf ME, Gleason KK, Short RD, Voelcker NH (2016) Fabrication and characterization of a porous silicon drug delivery system with an initiated chemical vapor deposition temperature-responsive coating. Langmuir 32:301–308CrossRefGoogle Scholar
  130. 130.
    Climent E, Martínez-Máñez R, Maquieira Á, Sancenón F, Marcos MD, Brun EM, Soto J, Amorós P (2012) Antibody-capped mesoporous nanoscopic materials: design of a probe for the selective chromo-fluorogenic detection of finasteride. ChemistryOpen 1:251–259CrossRefGoogle Scholar
  131. 131.
    Sweetman MJ, Voelcker NH (2012) Chemically patterned porous silicon photonic crystals towards internally referenced organic vapour sensors. RSC Adv 2:4620–4622CrossRefGoogle Scholar
  132. 132.
    Guan B, Ciampi S, Le Saux G, Gaus K, Reece PJ, Gooding JJ (2011) Different functionalization of the internal and external surfaces in mesoporous materials for biosensing applications using “click” chemistry. Langmuir 27:328–334CrossRefGoogle Scholar
  133. 133.
    Bowditch AP, Waters K, Gale H, Rice P, Scott EAM, Canham LT, Reeves CL, Loni A, Cox TI (1998) In-vivo assessment of tissue compatibility and calcification of bulk and porous silicon. MRS Proc 536:149–154CrossRefGoogle Scholar
  134. 134.
    Rosengren A, Wallman L, Bengtsson M, Laurell T, Danielsen N, Bjursten L (2000) Tissue reactions to porous silicon: a comparative biomaterial study. Phys Stat Solidi A 182(1):527–531CrossRefGoogle Scholar
  135. 135.
    Anderson SHC, Elliott H, Wallis D, Canham L, Powell J (2003) Dissolution of different forms of partially porous silicon wafers under simulated physiological conditions. Phys Stat Solidi A 197(2):331–335CrossRefGoogle Scholar
  136. 136.
    Canham LT, Reeves C, Newey J, Houlton M, Cox T, Buriak J, Stewart M (1999) Derivatized mesoporous silicon with dramatically improved stability in simulated human blood plasma. Adv Mater 11(18):1505–1507CrossRefGoogle Scholar
  137. 137.
    Godin B, Gu J, Serda RE, Ferrati S, Liu X, Chiappini C, Tanaka T, Decuzzi P, Ferrari M (2008) Multistage mesoporous silicon-based nanocarriers: biocompatibility with immune cells and controlled degradation in physiological fluids. Controlled Release Newslett 25(4):9–11Google Scholar
  138. 138.
    Santos HA, Riikonen J, Salonen J, Mäkilä E, Heikkilä T, Laaksonen T, Peltonen L, Lehto V-P, Hirvonen J (2010) In vitro cytotoxicity of porous silicon microparticles: effect of the particle concentration. Surf Chem Size Acta Biomater 6(7):2721–2731CrossRefGoogle Scholar
  139. 139.
    Sailor MJ, Lee EJ (1997) Surface chemistry of luminescent silicon nanocrystallites. Adv Mater 9:783–793CrossRefGoogle Scholar
  140. 140.
    Godin B, Gu J, Serda RE, Bhavane R, Tasciotti E, Chiappini C, Liu X, Tanaka T, Decuzzi P, Ferrari M (2010) Tailoring the degradation kinetics of mesoporous silicon structures through pegylation. J Biomed Mater Res A 94A(4):1236–1243Google Scholar
  141. 141.
    Popplewell JF, King S, Day J, Ackrill P, Fifield L, Cresswell R, di Tada M, Liu K (1998) Kinetics of uptake and elimination of silicic acid by a human subject: a novel application of 32Si and accelerator mass spectrometry. J Inorg Biochem 69:177–180CrossRefGoogle Scholar
  142. 142.
    Canham LT (2007) Nanoscale semiconducting silicon as a nutritional food additive. Nanotechnology 18(18):185704-1–185704-6CrossRefGoogle Scholar
  143. 143.
    Bimbo LM, Mäkilä E, Laaksonen T, Lehto V-P, Salonen J, Hirvonen J, Santos HA (2011) Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. Biomaterials 32(10):2625–2633CrossRefGoogle Scholar
  144. 144.
    Low SP, Williams KA, Canham LT, Voelcker NH (2010) Generation of reactive oxygen species from porous silicon microparticles in cell culture medium. J Biomed Mater Res A 93(3):1124–1131Google Scholar
  145. 145.
    Bimbo LM, Mäkilä E, Raula J, Laaksonen T, Laaksonen P, Strommer K, Kauppinen EI, Salonen J, Linder MB, Hirvonen J, Santos HA (2011) Functional hydrophobin-coating of thermally hydrocarbonized porous silicon microparticles. Biomaterials 32:9089–9099CrossRefGoogle Scholar
  146. 146.
    Bimbo LM, Sarparanta M, Mäkilä E, Laaksonen T, Laaksonen P, Salonen J, Linder MB, Hirvonen J, Airaksinen AJ, Santos HA (2012) Cellular interactions of surface modified nanoporous silicon particles. Nanoscale 4:3184–3192CrossRefGoogle Scholar
  147. 147.
    Kumeria T, McInnes SJP, Maher S, Santos A (2017) Porous silicon for drug delivery applications and theranostics: recent advances, critical review and perspectives. Expert Opin Drug Deliv 14(12):1407–1422CrossRefGoogle Scholar
  148. 148.
    Bayliss SC, Heald R, Fletcher DI, Buckberry LD (1999) The culture of mammalian cells on nanostructured silicon. Adv Mater 11:318–321 (SRC—GoogleScholar)CrossRefGoogle Scholar
  149. 149.
    Mayne A, Bayliss S, Barr P, Tobin M, Buckberry L (2000) Biologically interfaced porous silicon devices. Phys Stat Solidi A 182(1):505–513CrossRefGoogle Scholar
  150. 150.
    Mäkilä E, Bimbo LM, Kaasalainen M, Herranz B, Airaksinen AJ, Heinonen M, Kukk E, Hirvonen J, Santos HlA, Salonen J (2012) Amine modification of thermally carbonized porous silicon with silane coupling chemistry. Langmuir 28(39):14045–14054CrossRefGoogle Scholar
  151. 151.
    Bimbo LM, Sarparanta M, Mäkilä E, Laaksonen T, Laaksonen P, Salonen J, Linder MB, Hirvonen J, Airaksinen AJ, Santos HA (2012) Cellular interactions of surface modified nanoporous silicon particles. Nanoscale 4(10):3184–3192CrossRefGoogle Scholar
  152. 152.
    Kilian KA, Böcking T, Ilyas S, Gaus K, Jessup W, Gal M, Gooding JJ (2007) Forming antifouling organic multilayers on porous silicon rugate filters towards in vivo/ex vivo biophotonic devices. Adv Funct Mater 17:2884–2890CrossRefGoogle Scholar
  153. 153.
    Wu EC, Park JH, Park J, Segal E, Cunin F, Sailor MJ (2008) Oxidation-triggered release of fluorescent molecules or drugs from mesoporous Si microparticles. ACS Nano 2(11):2401–2409CrossRefGoogle Scholar
  154. 154.
    Gizzatov A, Stigliano C, Ananta JS, Sethi R, Xu R, Guven A, Ramirez M, Shen H, Sood A, Ferrari M, Wilson LJ, Liu X, Decuzzi P (2014) Geometrical confinement of Gd(Dota) molecules within mesoporous silicon nanoconstructs for MR imaging of cancer. Cancer Lett 352:1–5CrossRefGoogle Scholar
  155. 155.
    Serda RE, Mack A, Pulikkathara M, Zaske AM, Chiappini C, Fakhoury JR, Webb D, Godin B, Conyers JL, Liu XW, Bankson JA, Ferrari M (2010) Cellular association and assembly of a multistage delivery system. Small 6:1329–1340CrossRefGoogle Scholar
  156. 156.
    Sarparanta M, Heikkila T, Salonen J, Kukk E, Lehto V, Santos HA, Hirvonen J, Airaksinen AJ (2011) 18F-labeled modified porous silicon particles for investigation of drug delivery carrier distribution in vivo with positron emission tomography. Mol Pharm 8:1799–1806CrossRefGoogle Scholar
  157. 157.
    Schwartz MP, Derfus AM, Alvarez SD, Bhatia SN, Sailor MJ (2006) The smart petri dish: a nanostructured photonic crystal for real-time monitoring of living cells. Langmuir 22(16):7084–7090CrossRefGoogle Scholar
  158. 158.
    Tanaka T, Godin B, Bhavane R, Nieves-Alicea R, Gu J, Liu X, Chiappini C, Fakhoury J, Amra S, Ewing A (2010) In vivo evaluation of safety of nanoporous silicon carriers following single and multiple dose intravenous administrations in mice. Int J Pharm 402(1):190–197CrossRefGoogle Scholar
  159. 159.
    Koh Y, Jang S, Kim J, Kim S, Ko Y, Cho S, Sohn H (2008) Dbr pSi/Pmma composite materials for smart patch application. Colloids Surf A 313–314:328–331CrossRefGoogle Scholar
  160. 160.
    Liu D, Shahbazi M-A, Bimbo LM, Hirvonen J, Santos HA (2014) Biocompatibility of porous silicon for biomedical applications. In: Santon HA (ed) Porous silicon for biomedical applications. Woodhead. pp 129–181CrossRefGoogle Scholar
  161. 161.
    Serda RE, Ferrati S, Godin B, Tasciotti E, Liu X, Ferrari M (2009) Mitotic trafficking of silicon microparticles. Nanoscale 1:250–259CrossRefGoogle Scholar
  162. 162.
    Liu D, Shahbazi M, Bimbo L, Hirvonen J, Santos H (2014) Biocompatibility of porous silicon for biomedical applications, porous silicon for biomedical applications. Woodhead Publishing, Cambridge, pp 129–181CrossRefGoogle Scholar
  163. 163.
    Low SP, Voelcker NH, Canham LT, Williams KA (2009) The biocompatibility of porous silicon in tissues of the eye. Biomaterials 30:2873–2880CrossRefGoogle Scholar
  164. 164.
    Bowditch A, Waters K, Gale H, Rice P, Scott E, Canham L, Reeves C, Loni A, Cox T (1998) In-vivo assessment of tissue compatibility and calcification of bulk and porous silicon. MRS Online Proc Libr Arch 536Google Scholar
  165. 165.
    Sarparanta M, Mäkilä E, Heikkilä T, Salonen J, Kukk E, Lehto V-P, Santos HA, Hirvonen J, Airaksinen AJ (2011) 18f-labeled modified porous silicon particles for investigation of drug delivery carrier distribution in vivo with positron emission tomography. Mol Pharm 8(5):1799–1806CrossRefGoogle Scholar
  166. 166.
    Dalilottojari A, Tong WY, McInnes SJP, Voelcker NH (2016) Biocompatible and bioactive porous silicon materials. In: Korotcenkov G (ed) Porous silicon: from formation to application, part 3 biomedical applications. Taylor & Francis: Boca Raton. pp 319–335 (Chapter 17)Google Scholar
  167. 167.
    Yokoi K, Godin B, Oborn CJ, Alexander JF, Liu X, Fidler IJ, Ferrari M (2013) Porous silicon nanocarriers for dual targeting tumor associated endothelial cells and macrophages in stroma of orthotopic human pancreatic cancers. Cancer Lett 334(2):319–327CrossRefGoogle Scholar
  168. 168.
    Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318Google Scholar
  169. 169.
    Jiang W, Kim BY, Rutka JT, Chan WC (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3:145–150CrossRefGoogle Scholar
  170. 170.
    Lundquist CM, Loo C, Meraz IM, Cerda JDL, Liu X, Serda RE (2014) Characterization of free and porous silicon-encapsulated superparamagnetic iron oxide nanoparticles as platforms for the development of theranostic vaccines. Med Sci 2:51–69Google Scholar
  171. 171.
    Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF (2008) Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 38:1404–1413CrossRefGoogle Scholar
  172. 172.
    Hudson SP, Padera RF, Langer R, Kohane DS (2008) The biocompatibility of mesoporous silicates. Biomaterials 29(30):4045–4055CrossRefGoogle Scholar
  173. 173.
    Kovalainen M, Mönkäre J, Kaasalainen M, Riikonen J, Lehto V-P, Salonen J, Herzig K-H, Järvinen K (2013) Development of porous silicon nanocarriers for parenteral peptide delivery. Mol Pharm 10:353–359CrossRefGoogle Scholar
  174. 174.
    Santos HA, Hirvonen J (2012) Nanostructured porous silicon materials: potential candidates for improving drug delivery. Nanomedicine 7(9):1281–1284CrossRefGoogle Scholar
  175. 175.
    Santos HA, Salonen J, Bimbo LM, Lehto V-P, Peltonen L, Hirvonen J (2011) Mesoporous materials as controlled drug delivery formulations. J Drug Del Sci Tech 21(2):139–155CrossRefGoogle Scholar
  176. 176.
    Institute NC What is cancer. https://www.cancer.gov/about-cancer/understanding/what-is-cancer. Accessed December 4
  177. 177.
    Organization WH Cancer. http://www.who.int/mediacentre/factsheets/fs297/en/. Accessed December 4
  178. 178.
    Yu MK, Park J, Jon S (2012) Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2(1):3–44CrossRefGoogle Scholar
  179. 179.
    Buchsbaum DJ, Rogers BE, Khazaeli MB, Mayo MS, Milenic DE, Kashmiri SV, Anderson CJ, Chappell LL, Brechbiel MW, Curiel DT (1999) Targeting strategies for cancer radiotherapy. Clin Cancer Res 5(10 Suppl):3048s–3055sGoogle Scholar
  180. 180.
    Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591CrossRefGoogle Scholar
  181. 181.
    Alexiou C, Schmid RJ, Jurgons R, Kremer M, Wanner G, Bergemann C, Huenges E, Nawroth T, Arnold W, Parak FG (2006) Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur Biophys J 35(5):446–450CrossRefGoogle Scholar
  182. 182.
    Vaccari L, Canton D, Zaffaroni N, Villa R, Tormen M, di Fabrizio E (2006) Porous silicon as drug carrier for controlled delivery of doxorubicin anticancer agent. Microelectron Eng 83(4):1598–1601CrossRefGoogle Scholar
  183. 183.
    Gu L, Park J-H, Duong KH, Ruoslahti E, Sailor MJ (2010) Magnetic luminescent porous silicon microparticles for localized delivery of molecular drug payloads. Small 6(22):2546–2552CrossRefGoogle Scholar
  184. 184.
    Chhablani J, Nieto A, Hou H, Wu EC, Freeman WR, Sailor MJ, Cheng L (2013) Oxidized porous silicon particles covalently grafted with daunorubicin as a sustained intraocular drug delivery system. Invest Ophthalmol Vis Sci 54(2):1268–1279CrossRefGoogle Scholar
  185. 185.
    Hou H, Nieto A, Ma F, Freeman WR, Sailor MJ, Cheng L (2014) Tunable sustained intravitreal drug delivery system for daunorubicin using oxidized porous silicon. J Controlled Release 178(Supplement C):46–54CrossRefGoogle Scholar
  186. 186.
    Nan K, Ma F, Hou H, Freeman WR, Sailor MJ, Cheng L (2014) Porous silicon oxide-plga composite microspheres for sustained ocular delivery of daunorubicin. Acta Biomater 10(8):3505–3512CrossRefGoogle Scholar
  187. 187.
    Hou H, Huffman K, Rios S, Freeman WR, Sailor MJ, Cheng L (2015) A novel approach of daunorubicin application on formation of proliferative retinopathy using a porous silicon controlled delivery system: pharmacodynamics. Invest Ophthalmol Vis Sci 56(4):2755–2763CrossRefGoogle Scholar
  188. 188.
    Wu EC, Andrew JS, Buyanin A, Kinsella JM, Sailor MJ (2011) Suitability of porous silicon microparticles for the long-term delivery of redox-active therapeutics. Chem Commun 47(20):5699–5701CrossRefGoogle Scholar
  189. 189.
    Li X, St. John J, Coffer JL, Chen Y, Pinizzotto RF, Newey J, Reeves C, Canham LT (2000) Porosified silicon wafer structures impregnated with platinum anti-tumor compounds: fabrication, characterization, and diffusion studies. Biomed Microdevices 2(4):265–272Google Scholar
  190. 190.
    Coffer JL, Montchamp J-L, Aimone JB, Weis RP (2003) Routes to calcified porous silicon: implications for drug delivery and biosensing. Phys Stat Solidi A 197(2):336–339CrossRefGoogle Scholar
  191. 191.
    Park JS, Kinsella JM, Jandial DD, Howell SB, Sailor MJ (2011) Cisplatin-loaded porous Si microparticles capped by electroless deposition of platinum. Small 7(14):2061–2069CrossRefGoogle Scholar
  192. 192.
    Xiao L, Gu L, Howell SB, Sailor MJ (2011) Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells. ACS Nano 5(5):3651–3659CrossRefGoogle Scholar
  193. 193.
    Hong C, Lee J, Zheng H, Hong SS, Lee C (2011) Porous silicon nanoparticles for cancer photothermotherapy. Nanoscale Res Lett 6(1):321-1–321-8CrossRefGoogle Scholar
  194. 194.
    Lee C, Kim H, Hong C, Kim M, Hong SS, Lee DH, Lee WI (2008) Porous silicon as an agent for cancer thermotherapy based on near-infrared light irradiation. J Mater Chem 18(40):4790–4795CrossRefGoogle Scholar
  195. 195.
    Savage DJ, Liu X, Curley SA, Ferrari M, Serda RE (2013) Porous silicon advances in drug delivery and immunotherapy. Curr Opin Pharmacol 13(5):834–841CrossRefGoogle Scholar
  196. 196.
    Godin B, Chiappini C, Srinivasan S, Alexander JF, Yokoi K, Ferrari M, Decuzzi P, Liu X (2012) Discoidal porous silicon particles: fabrication and biodistribution in breast cancer bearing mice. Adv Funct Mater 22(20):4225–4235CrossRefGoogle Scholar
  197. 197.
    Blanco E, Sangai T, Hsiao A, Ferrati S, Bai L, Liu X, Meric-Bernstam F, Ferrari M (2013) Multistage delivery of chemotherapeutic nanoparticles for breast cancer treatment. Cancer Lett 334(2):245–252CrossRefGoogle Scholar
  198. 198.
    Wang CF, Sarparanta MP, Mäkilä EM, Hyvönen MLK, Laakkonen PM, Salonen JJ, Hirvonen JT, Airaksinen AJ, Santos HA (2015) Multifunctional porous silicon nanoparticles for cancer theranostics. Biomaterials 48(Supplement C):108–118CrossRefGoogle Scholar
  199. 199.
    Kinnari PJ, Hyvönen MLK, Mäkilä EM, Kaasalainen MH, Rivinoja A, Salonen JJ, Hirvonen JT, Laakkonen PM, Santos HA (2013) Tumour homing peptide-functionalized porous silicon nanovectors for cancer therapy. Biomaterials 34(36):9134–9141CrossRefGoogle Scholar
  200. 200.
    Shahbazi M-A, Shrestha N, Mäkilä E, Araújo F, Correia A, Ramos T, Sarmento B, Salonen J, Hirvonen J, Santos HA (2015) A Prospective cancer chemo-immunotherapy approach mediated by synergistic Cd326 targeted porous silicon nanovectors. Nano Res 8(5):1505–1521CrossRefGoogle Scholar
  201. 201.
    Almeida PV, Shahbazi M-A, Makila E, Kaasalainen M, Salonen J, Hirvonen J, Santos HA (2014) Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors. Nanoscale 6(17):10377–10387CrossRefGoogle Scholar
  202. 202.
    Kong F, Zhang X, Zhang H, Qu X, Chen D, Servos M, Mäkilä E, Salonen J, Santos HA, Hai M, Weitz DA (2015) Inhibition of multidrug resistance of cancer cells by co-delivery of DNA nanostructures and drugs using porous silicon Nanoparticles@Giant Liposomes. Adv Funct Mater 25(22):3330–3340CrossRefGoogle Scholar
  203. 203.
    Puvanakrishnan P, Park J, Chatterjee D, Krishnan S, Tunnell JW (2012) In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy. Int J Nanomed 7:1251–1258 (SRC—GoogleScholar)Google Scholar
  204. 204.
    Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, West JL, Drezek RA (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7:169–183CrossRefGoogle Scholar
  205. 205.
    Chatterjee DK, Diagaradjane P, Krishnan S (2011) Nanoparticle-mediated hyperthermia in cancer therapy. Ther Deliv 2:1001–1014CrossRefGoogle Scholar
  206. 206.
    Hong C, Lee J, Son M, Hong SS, Lee C (2011) In-vivo cancer cell destruction using porous silicon nanoparticles. Anticancer Drugs 22:971–977Google Scholar
  207. 207.
    Shen H, You J, Zhang G, Ziemys A, Li Q, Bai L, Deng X, Erm DR, Liu X, Li C, Ferrari M (2012) Cooperative, nanoparticle-enabled thermal therapy of breast cancer. Adv Healthc Mater 1:84–89CrossRefGoogle Scholar
  208. 208.
    Ma M, Chen H, Chen Y, Wang X, Chen F, Cui X, Shi J (2012) Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo-/chemo-therapy and multimodal imaging. Biomaterials 33:989–998CrossRefGoogle Scholar
  209. 209.
    Robertson CA, Evans DH, Abrahamse H Photodynamic therapy (Pdt): a short review on cellular mechanisms and cancer research applications for Pdt. J Photochem Photobiol B Biol 96:1–8CrossRefGoogle Scholar
  210. 210.
    Canham LT, Ferguson F (2014) Porous silicon in branchytherapy. In: Canham LT (ed) Handbook of porous silicon. Springer International Publishing, Switzerland, pp 1−7Google Scholar
  211. 211.
    Zhang K, Loong SLE, Connor S, Sidney Yu SWK, Tan SY, Ng RTH, Lee KM, Canham LT, Chow PKH (2005) Complete tumor response following intratumoral 32P BioSilicon on human hepatocellular and pancreatic carcinoma xenografts in nude mice. Clin Cancer Res 11:7532–7537CrossRefGoogle Scholar
  212. 212.
    Goh AS-W, Chung AY-F, Lo RH-G, Lau T-N, Yu SW-K, Chng M, Satchithanantham S, Loong SL-E, Ng DC-E, Lim B-C, Connor S, Chow PK-H (2007) A novel approach to brachytherapy in hepatocellular carcinoma using a Phosphorous32 (32P) brachytherapy delivery device—a first-in-man study. Int J Radiat Oncol Biol Phys 67:786–792CrossRefGoogle Scholar
  213. 213.
    Bonanno LM, Kwong TC, DeLouise LA (2010) Label-free porous silicon immunosensor for broad detection of opiates in a blind clinical study and results comparison to commercial analytical chemistry techniques. Anal Chem 82:9711–9718CrossRefGoogle Scholar
  214. 214.
    Bonanno LM, Segal E (2011) Nanostructured porous silicon-polymer-based hybrids: from biosensing to drug delivery. Nanomed 6:1755–1770CrossRefGoogle Scholar
  215. 215.
    Pacholski C, Sartor M, Sailor MJ, Cunin F, Miskelly GM (2005) Biosensing using porous silicon double-layer interferometers: reflective interferometric fourier transform spectroscopy. J Am Chem Soc 127:11636–11645CrossRefGoogle Scholar
  216. 216.
    Alvarez SD, Schwartz MP, Migliori B, Rang CU, Chao L, Sailor MJ (2007) Using a porous silicon photonic crystal for bacterial cell-based biosensing. Phys Stat Solidi A 204:1439–1443CrossRefGoogle Scholar
  217. 217.
    Janshoff A, Dancil K-PS, Steinem C, Greiner DP, Lin VSY, Gurtner C, Motesharei K, Sailor MJ, Ghadiri MR (1998) Macroporous P-type silicon fabry−perot layers. Fabrication, characterization, and applications in biosensing. J Am Chem Soc 120:12108–12116CrossRefGoogle Scholar
  218. 218.
    Tasciotti E, Godin B, Martinez JO, Chiappini C, Bhavane R, Liu X, Ferrari M (2011) Near-infrared imaging method for the in vivo assessment of the biodistribution of nanoporous silicon particles. Mol Imaging 10:56–58CrossRefGoogle Scholar
  219. 219.
    Ahire JH, Wang Q, Coxon PR, Malhotra G, Brydson R, Chen R, Chao Y (2012) Highly luminescent and nontoxic amine-capped nanoparticles from porous silicon: synthesis and their use in biomedical imaging. ACS Appl Mater Interfaces 4:3285–3239CrossRefGoogle Scholar
  220. 220.
    Sinha S, Tong WY, Williamson NH, McInnes SJP, Puttick S, Cifuentes-Rius A, Bhardwaj R, Plush SE, Voelcker NH (2017) Novel Gd-loaded silicon nanohybrid: a potential EGFR expressing cancer cell targeting MRI contrast agent. ACS Appl Mater Interfaces. Just Accepted Manuscript,  https://doi.org/10.1021/acsami.7b14538
  221. 221.
    Kallinen AM, Sarparanta MP, Liu D, Salonen JJ, Hirvonen JT, Santos HA, Airaksinen AJ (2014) In vivo evaluation of porous silicon and porous silicon solid lipid nanocomposites for passive targeting and imaging. Mol Pharm 11:2876–2886CrossRefGoogle Scholar
  222. 222.
    Sarparanta M, Bimbo LM, Laaksonen TJ, Laaksonen P, Nyman M, Salonen J, Linder MB, Hirvonen J, Santos HA, Airaksinen AJ, Plasma S (2012) Intravenous Delivery of hydrophobin-functionalized porous silicon nanoparticles: adsorption and biodistribution. Mol Pharm 9:654–663CrossRefGoogle Scholar
  223. 223.
    Parodi A, Quattrocchi N, van de Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, Brown BS, Khaled SZ, Yazdi IK, Enzo MV, Isenhart L, Ferrari M, Tasciotti E (2013) Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 8:61–68CrossRefGoogle Scholar
  224. 224.
    van de Ven AL, Kim P, Haley O, Fakhoury JR, Adriani G, Schmulen J, Moloney P, Hussain F, Ferrari M, Liu X, Yun S, Decuzzi P (2012) Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution. J Control Release 158:148–155CrossRefGoogle Scholar
  225. 225.
    Gallach D, Sanchez GR, Noval AM, Silvan MM, Ceccone G, Palma RJM, Costa VT, Duart JMM, Engineering B (2010) Materials science and mater. Sci Eng B 169:123–127CrossRefGoogle Scholar
  226. 226.
    Santos HA (2014) Porous silicon for biomedical applications. Woodhead Publishing LimitedGoogle Scholar
  227. 227.
    Tasciotti E, Liu X, Bhavane R, Plant K, Leonard AD, Price BK, Cheng MM-C, Decuzzi P, Tour JM, Robertson F, Ferrari M (2008) Mesoporous Silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nanotechnol 3:151–157CrossRefGoogle Scholar
  228. 228.
    Chiappini C, Tasciotti E, Fakhoury JR, Fine D, Pullan L, Wang Y-C, Fu L, Liu X, Ferrari M (2010) Tailored porous silicon microparticles: fabrication and properties. ChemPhysChem 11:1029–1035CrossRefGoogle Scholar
  229. 229.
    Hernandez M, Recio G, Martin-Palma RJ, Garcia-Ramos JV, Domingo C, Sevilla P (2012) Surface enhanced fluorescence of anti-tumoral drug emodin adsorbed on silver nanoparticles and loaded on porous silicon. Nanoscale Res Lett 7:364–370CrossRefGoogle Scholar
  230. 230.
    Kirui DK, Ferrari M (2015) Intravital microscopy imaging approaches for image-guided drug delivery systems. Curr Drug Targets 16(6):528–541CrossRefGoogle Scholar
  231. 231.
    Ananta JS, Godin B, Sethi R, Moriggi L, Liu X, Serda RE, Krishnamurthy R, Muthupillai R, Bolskar RD, Helm L, Ferrari M, Wilson LJ, Decuzzi P (2010) Geometrical Confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast. Nature Nanotechnol 5:815–821CrossRefGoogle Scholar
  232. 232.
    Nissinen T, Näkki S, Latikka M, Heinonen M, Liimatainen T, Xu W, Ras RHA, Gröhn O, Riikonen J, Lehto V-P (2014) Facile Synthesis of Biocompatible Superparamagnetic Mesoporous Nanoparticles for Imageable Drug Delivery. Micropor Mesopor Mat 195:2–8CrossRefGoogle Scholar
  233. 233.
    Santos HA, Bimbo LM, Herranz B, Shahbazi M-A, Hirvonen J, Salonen J (2012) Nanostructured porous silicon in preclinical imaging: moving from bench to bedside. J Mater Res 28:152–164CrossRefGoogle Scholar
  234. 234.
    Sarparanta MP, Bimbo LM, Mäkilä EM, Salonen JJ, Laaksonen PH, Helariutta AMK, Linder MB, Hirvonen JT, Laaksonen TJ, Santos HA, Airaksinen AJ (2012) The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials 33(11):3353–3362CrossRefGoogle Scholar
  235. 235.
    Rytkönen J, Miettinen R, Kaasalainen M, Lehto VP, Salonen J, Närvänen A (2012) Functionalization of mesoporous silicon nanoparticles for targeting and bioimaging purposes. J Nanomat 2012(Article ID 896562):1–9CrossRefGoogle Scholar
  236. 236.
    Bimbo LM, Sarparanta M, Santos HA, Airaksinen AJ, Makila E, Laaksonen T, Peltonen L, Lehto V-P, Hirvonen J, Salonen J (2010) Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. ACS Nano 4(6):3023–3032CrossRefGoogle Scholar
  237. 237.
    Huhtala T, Jalanko A, Kaasalainen M, Salonen J, Riikonen R, Complexed IGF (2012) Biodistribution and pharmacokinetics in infantile neuronal ceroid lipofuscinosis. J Drug Deliv 2012:626417CrossRefGoogle Scholar
  238. 238.
    Gu L, Park J, Duong KH, Ruoslahti E, Sailor MJ (2010) Magnetic Luminescent porous silicon microparticles for localized delivery of molecular drug payloads. Small 6:2546–2552CrossRefGoogle Scholar
  239. 239.
    Noval A, Vaquero V, Torres-Costa V, Gallach D, Ferro-Llanos V, Serrano JJ, Ruiz JP, Pozo F, Palma RJ (2011) Hybrid luminescent/magnetic nanostructured porous silicon particles for biomedical applications. J Biomed Opt 16:025002–025008CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Steven J. P. McInnes
    • 1
  • Abel Santos
    • 2
    • 3
    • 4
  • Tushar Kumeria
    • 2
    • 5
  1. 1.Division of Information Technology, Engineering and the EnvironmentThe University of South AustraliaMawson LakesAustralia
  2. 2.School of Chemical EngineeringThe University of AdelaideAdelaideAustralia
  3. 3.Institute for Photonics and Advanced Sensing (IPAS)The University of AdelaideAdelaideAustralia
  4. 4.ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)The University of AdelaideAdelaideAustralia
  5. 5.School of PharmacyThe University of QueenslandBrisbaneAustralia

Personalised recommendations