Skip to main content

Porous Silicon Particles for Cancer Therapy and Bioimaging

  • Chapter
  • First Online:
Book cover Nanooncology

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

Porous silicon (pSi) engineered by electrochemical etching of silicon has been explored as a drug delivery carrier with the aim of overcoming the limitations of traditional therapies and medical treatments. pSi is biodegradable, non-cytotoxic and has optoelectronic properties that make this platform material a unique candidate for developing biomaterials for drug delivery and theranostics therapies. pSi provides new opportunities to improve existing therapies in different areas, paving the way for developing advanced theranostic nanomedicines, incorporating payloads of therapeutics with imaging capabilities. However, despite these outstanding advances, more extensive in-vivo studies are needed to assess the feasibility and reliability of this technology for real clinical practice. In this Chapter, we present an updated overview about the recent therapeutic systems based on pSi, with a critical analysis on the problems and opportunities that this technology faces as well as highlighting the growing potential of pSi technolgy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosen H, Abribat T (2005) The rise and rise of drug delivery. Nat Rev Drug Discov 4:381–385

    Article  CAS  Google Scholar 

  2. Hoffman AS (2008) The origins and evolution of “controlled” drug delivery systems. J Controlled Release 132:153–163

    Article  CAS  Google Scholar 

  3. Park K (2014) Controlled drug delivery systems: past forward and future back. J Controlled Release 190:3–8

    Article  CAS  Google Scholar 

  4. Mitragotri S, Burke PA, Langer R (2014) Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov 13:655–672

    Article  CAS  Google Scholar 

  5. LaVan DA, Lynn DM, Langer R (2002) Moving smaller in drug discovery and delivery. Nat Rev Drug Discov 1:77–84

    Article  CAS  Google Scholar 

  6. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171

    Article  CAS  Google Scholar 

  7. Santini JTJ, Richards AC, Scheidt R, Cima MJ, Langer R (2000) Microchips as controlled drug-delivery devices. Angew Chem Int Ed 39:2396–2407

    Article  CAS  Google Scholar 

  8. Kelkar SS, Reineke TM (2011) Theranostics: combining imaging and therapy. Bioconjug Chem 22:1879–1903

    Article  CAS  Google Scholar 

  9. Mann AP, Scodeller P, Hussain S. Joo J, Kwon E, Braun GB, Mölder T, She ZG, Ramana Kotamraju V, Ranscht B, Krajewski S, Teesalu T, Bhatia S, Sailor MJ, Ruoslahti E (2016) A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries. Nat Comm 7:11980-1–11980-11

    Article  CAS  Google Scholar 

  10. Lanza GM (2015) From micro to nano in seconds. Nat Nanotechnol 10:301–302

    Article  CAS  Google Scholar 

  11. Svenson S (2013) Theranostics: are we there yet? Mol Pharm 10:848–856

    Article  CAS  Google Scholar 

  12. Uhlir A (1956) Electrolytic shaping of germanium and silicon. Bell Syst Tech J 35(2):333–347

    Article  CAS  Google Scholar 

  13. Lehmann V (2002) Electrochemistry of silicon. Wiley-VCH

    Google Scholar 

  14. Sailor MJ (2012) Porous silicon in practice: preparation, characterization and applications. Wiley-VCH

    Google Scholar 

  15. Canham LT (2014) Handbook of porous silicon. Springer International Publishing, Berlin

    Book  Google Scholar 

  16. Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57(10):1046–1048

    Article  CAS  Google Scholar 

  17. Lehmann V, Gösele U (1991) Porous silicon formation: a quantum wire effect. Appl Phys Lett 58:856–858

    Article  CAS  Google Scholar 

  18. Canham LT (1995) Bioactive silicon structure fabrication through nanoetching techniques. Adv Mater 7(12):1033–1037

    Article  CAS  Google Scholar 

  19. Canham LT, Reeves CL, King DO, Branfield PJ, Crabb JG, Ward MC (1996) Bioactive polycrystalline silicon. Adv Mater 8(10):850–852

    Article  CAS  Google Scholar 

  20. Prestidge CA, Barnes TJ, Lau CH, Barnett C, Loni A, Canham LT (2007) Mesoporous silicon: a platform for the delivery of therapeutics. Expert Opin Drug Deliv 4:101–110

    Article  CAS  Google Scholar 

  21. Salonen J, Kaukonen AM, Hirvonen J, Lehto VP (2008) Mesoporous silicon in drug delivery applications. J Pharm Sci 97(2):632–653

    Article  CAS  Google Scholar 

  22. Anglin EJ, Cheng L, Freeman WR, Sailor MJ (2008) Porous silicon in drug delivery devices and materials. Adv Drug Deliv Rev 60:1266–1277

    Article  CAS  Google Scholar 

  23. Gu L, Hall DJ, Qin Z, Anglin E, Joo J, Mooney DJ, Howell SB, Sailor MJ (2013) In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nat Comm 4:2326

    Article  CAS  Google Scholar 

  24. Secret E, Maynadier M, Gallud A, Chaix A, Bouffard E, Gary-Bobo M, Marcotte N, Mongin O, El Cheikh K, Hugues V, Auffan M, Frochot C, Morère A, Maillard P, Blanchard-Desce M, Sailor MJ, Garcia M, Durand JO, Cunin F (2014) Two-photon excitation of porphyrin-functionalized porous silicon nanoparticles for photodynamic therapy. Adv Mater 26:7643–7648

    Article  CAS  Google Scholar 

  25. Joo J, Liu X, Ramana Kotamraju V, Ruoslahti E, Nam Y, Sailor MJ (2015) Gated luminescence imaging of silicon nanoparticles. ACS Nano 9:6233–6241

    Article  CAS  Google Scholar 

  26. Ledford H (2016) Bankruptcy of nanomedicine firm worries drug developers. Nature 533:304–305

    Article  CAS  Google Scholar 

  27. Santini JTJ, Cima MJ, Langer R (1999) A controlled-release microchip. Nature 397:335–338

    Article  CAS  Google Scholar 

  28. Staples M, Daniel K, Cima MJ, Langer R (2006) Application of micro- and nano-electromechanical devices to drug delivery. Pharm Res 23:847–863

    Article  CAS  Google Scholar 

  29. Nan K, Ma F, Hou H, Freeman WR, Sailor MJ, Cheng L (2014) Porous silicon oxide-plga composite microspheres for sustained ocular delivery of daunorubicin. Acta Biomater 10:3505–3512

    Article  CAS  Google Scholar 

  30. Nieto A, Hou H, Sailor MJ, Freeman WR, Cheng L (2013) Ocular silicon distribution and clearance following intravitreal injection of porous silicon microparticles. Exp Eye Res 116:161–168

    Article  CAS  Google Scholar 

  31. Wu EC, Andrew JS, Cheng L, Freeman WR, Pearson L, Sailor MJ (2011) Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles. Biomaterials 32:1957–1966

    Article  CAS  Google Scholar 

  32. Chhablani J, Nieto A, Hou HY, Wu EC, Freeman WR, Sailor MJ, Cheng L (2013) Oxidized porous silicon particles covalently grafted with daunorubicin as a sustained intraocular drug delivery system. Invest Ophthalmol Vis Sci 54:1268–1279

    Article  CAS  Google Scholar 

  33. Hartmann KI, Nieto A, Wu EC, Freeman WR, Kim JS, Chhablani J, Sailor MJ, Cheng L (2013) Hydrosilylated porous silicon particles function as an intravitreal drug delivery system for daunorubicin. J Ocul Pharmacol Ther 29:493–500

    Article  CAS  Google Scholar 

  34. Cheng L, Anglin EJ, Cunin F, Kim D, Sailor MJ, Falkenstein I, Tammewar A, Freeman WR (2008) Intravitreal properties of porous silicon photonic crystals: a potential self-reporting intraocular drug-delivery vehicle. Br J Ophthalmol 92:705–711

    Article  CAS  Google Scholar 

  35. Huang Z, Geyer N, Werner P, de Boor J, Gösele U (2011) Metal-assisted chemical etching of silicon: a review. Adv Mater 23:285–308

    Article  CAS  Google Scholar 

  36. Huang Z, Shimizu T, Senz S, Zhang Z, Geyer N, Gösele U (2010) Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon. J Phys Chem C 114:10683–10690

    Article  CAS  Google Scholar 

  37. Huang ZP, Shimizu T, Senz S, Zhang Z, Zhang XX, Lee W, Geyer N, Gösele U (2009) Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions. Nano Lett 9:2519–2525

    Article  CAS  Google Scholar 

  38. Schmidt V, Senz S, Gösele U (2005) Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett 5:931–935

    Article  CAS  Google Scholar 

  39. Choi WK, Liew TH, Dawood MK (2008) Synthesis of silicon nanowires and nanofin arrays using interference lithography and catalytic etching. Nano Lett 8:3799–3802

    Article  CAS  Google Scholar 

  40. de Boor J, Geyer N, Wittemann JV, Gösele U, Schmidt V (2010) Sub-100 Nm silicon nanowires by laser interference lithography and metal-assisted etching. Nanotechnology 21:095302–1–095302-5

    Google Scholar 

  41. Myrhaug EH, Tveit H (2000) Material balances of trace elements in the ferrosilicon and silicon processes. In: Electric furnace conference, Warrendale

    Google Scholar 

  42. Lui N, Huo K, MacDowell MT, Zhao J, Cui Y (2013) Rice husks as a sustainable source of nanostructured silicon for high performance Li-Ion battery anodes. Sci Rep 3:1919-1–1919-7

    Google Scholar 

  43. Kim KH, Lee DJ, Cho KM, Kim SJ, Park JK, Jung HT (2015) Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles. Sci Rep 5:9014-1–9014-7

    Google Scholar 

  44. Bao Z, Weatherspoon MR, Shian S, Cai Y, Graham PD, Allan SM, Ahmad G, Dickerson MB, Church BC, Kang Z, Abernathy HW, Summers CJ, Liu M, Sandhage KH (2007) Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 446:172–175

    Article  CAS  Google Scholar 

  45. Watanabe Y, Sakai T (1971) Application of a thick anode film to semiconductor devices. Rev Electr Commun Lab 19:899–903

    Google Scholar 

  46. Dimova-Malinovska D, Sendova-Vassileva M, Tzenov N, Kamenova M (1997) Preparation of thin porous silicon layers by stain etching. Thin Solid Films 297:9–12

    Article  CAS  Google Scholar 

  47. Li X, Bohn PW (2000) Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl Phys Lett 77:2572–2574

    Article  CAS  Google Scholar 

  48. Tsujino K, Matsumura M (2005) Helical nanoholes bored in silicon by wet chemical etching using platinum nanoparticles as catalyst. Electrochem Solid State Lett 8:C193–C195

    Article  CAS  Google Scholar 

  49. Chartier C, Bastide S, Levy-Clement C (2008) Metal-assisted chemical etching of silicon in HF-H2O. Electrochim. Acta 53:5509–5516

    Article  CAS  Google Scholar 

  50. Peng K, Lu A, Zhang R, Lee ST (2008) Motility of metal nanoparticles in silicon and induced anisotropic silicon etching. Adv Funct Mater 18:3026–3035

    Article  CAS  Google Scholar 

  51. Zhang ML, Peng KQ, Fan X, Jie JS, Zhang RQ, Lee ST, Wong NB (2008) Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. J Phys Chem C 112:4444–4450

    Article  CAS  Google Scholar 

  52. Harada Y, Li XL, Bohn PW, Nuzzo RG (2001) Catalytic amplification of the soft lithographic patterning of Si. Nonelectrochemical orthogonal fabrication of photoluminescent porous Si pixel arrays. J Am Chem Soc 123:8709–8717

    Article  CAS  Google Scholar 

  53. Peng KQ, Yan YJ, Gao SP, Zhu J (2003) Dendrite-assisted growth of silicon nanowires in electroless metal deposition. Adv Funct Mater 13:127–132

    Article  CAS  Google Scholar 

  54. Kooij ES, Butter K, Kelly JJ (1999) Silicon Etching in HNO3/Hf solution: charge balance for the oxidation reaction. Electrochem Solid State Lett 2:178–180

    Article  CAS  Google Scholar 

  55. Turner DR (1960) On the mechanism of chemically etching germanium and silicon. J Electrochem Soc 107:810–816

    Article  CAS  Google Scholar 

  56. Hadjersi T, Gabouze N, Kooij ES, Zinine A, Ababou A, Chergui W, Cheraga H, Belhousse S, Djeghri A (2004) Metal-assisted chemical etching in HF/Na2S2O8 or HF/KMnO4 produces porous silicon. Thin Solid Films 459:271–275

    Article  CAS  Google Scholar 

  57. Cruz S, Honig-dOrville A, Muller J (2005) Fabrication and optimization of porous silicon substrates for diffusion membrane applications. J Electrochem Soc 152:C418–C424

    Article  CAS  Google Scholar 

  58. Tsujino K, Matsumura M (2005) Boring deep cylindrical nanoholes in silicon using silver nanoparticles as a catalyst. Adv Mater 17:1045–1047

    Article  CAS  Google Scholar 

  59. Yoo JK, Kim J, Jung YS, Kang K (2012) Scalable fabrication of silicon nanotubes and their application to energy storage. Adv Mater 24:5452–5456

    Article  CAS  Google Scholar 

  60. Yi R, Dai F, Gordin ML, Chen S, Wang D (2013) Micro-sized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries. Adv Energy Mater 3:295–300

    Article  CAS  Google Scholar 

  61. Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G (2010) High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat Mater 9:353–358

    Article  CAS  Google Scholar 

  62. Maher S, Alsawat M, Kumeria T, Fathalla D, Gihan F, Santos A, Fawzia H, Losic D (2015) Luminescent silicon diatom replicas: self-reporting and degradable drug carriers with biologically derived shape for sustained delivery of therapeutics. Adv Funct Mater 25:5107–5116

    Article  CAS  Google Scholar 

  63. Sun W, Puzas JE, Sheu T, Liu X, Fauchet PM (2007) Nano- to microscale porous silicon as a cell interface for bone-tissue engineering. Adv Mater 19:921–924

    Article  Google Scholar 

  64. Asoh H, Sakamoto S, Ono S (2007) Metal patterning on silicon surface by site-selective electroless deposition through colloidal crystal templating. J Colloid Interface Sci 316:547–552

    Article  CAS  Google Scholar 

  65. Ono S, Oide A, Asoh H (2007) Nanopatterning of silicon with use of self-organized porous alumina and colloidal crystals as mask. Electrochim Acta 52:2898–2904

    Article  CAS  Google Scholar 

  66. Cozzi C, Polito G, Strambinin LM, Barillaro G (2016) Electrochemical preparation of in-silicon hierarchical networks of regular out-of-plane macropores interconnected by secondary in-plane pores through controlled inhibition of breakdown effects. Electrochim Acta 187:552–559

    Article  CAS  Google Scholar 

  67. Shahbazi M-A, Hamidi M, Mäkilä EM, Zhang H, Almeida PV, Kaasalainen M, Salonen JJ, Hirvonen JT, Santos HA (2013) The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility. Biomaterials 34(31):7776–7789

    Article  CAS  Google Scholar 

  68. Park J-H, Gu L, Von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent Porous silicon nanoparticles for in vivo applications. Nat Mater 8(4):331–336

    Article  CAS  Google Scholar 

  69. Linford MR, Chidsey CED (1993) Alkyl monolayers covalently bonded to silicon surfaces. J Am Chem Soc 115:12631–12632

    Article  CAS  Google Scholar 

  70. Ciampi S, Harper JB, Gooding JJ (2010) Wet chemical routes to the assembly of organic monolayers on silicon surfaces via the formation of Si–C bonds: surface preparation, passivation and functionalization. Chem Soc Rev 39:2158–2183

    Article  CAS  Google Scholar 

  71. Salonen J, Laine E, Niinisto L (2002) Thermal carbonization of porous silicon surface by acetylene. J Appl Phys 91:456–461

    Article  CAS  Google Scholar 

  72. Jarvis KL, Barnes TJ, Prestidge CA (2012) Surface chemistry of porous silicon and implications for drug encapsulation and delivery applications. Adv Colloid Interface Sci 175:25–38

    Article  CAS  Google Scholar 

  73. Harraz FA (2014) Porous silicon chemical sensors and biosensors: a review. Sensor Actuat B: Chem 202:897–912

    Article  CAS  Google Scholar 

  74. Jamois C, Wehrspohn RB, Schilling J, Müller F, Hillebrand R, Hergert W (2002) Silicon-based photonic crystals slabs: two concepts. IEEE J Quantum Electron 38:805–810

    Article  CAS  Google Scholar 

  75. Hillebrand R, Jamois C, Schilling J, Wehrspohn RB, Hergert W (2003) Computation of optical properties of Si-based photonic crystals with varying pore diameters. Phys Stat Solidi B 240:124–133

    Article  CAS  Google Scholar 

  76. Müller F, Birner A, Gösele U, Lehmann V, Ottow S, Föll H (2000) Structuring of macroporous silicon for applications as photonic crystals. J Porous Mater 7:201–204

    Article  Google Scholar 

  77. Schilling J, Wehrspohn RB, Birner A, Müller F, Hillebrand R, Gösele U, Leonard SW, Mondia JP, Genereux F, Van Driel HM, Kramper P, Sandoghdar V, Busch K (2001) A model system for two-dimensional and three-dimensional photonic crystals: macroporous silicon. J Opt A: Pure Appl Opt 3:S121–S132

    Article  CAS  Google Scholar 

  78. Birner A, Wehrspohn RB, Gösele U, Bursch K (2001) Silicon-based photonic crystals. Adv Mater 13:377–388

    Article  CAS  Google Scholar 

  79. Ottow S, Lehmann V, Föll H (1996) Processing of three-dimensional microstructures using macroporous N-type silicon. J Electrochem Soc 143:385–390

    Article  CAS  Google Scholar 

  80. von Freymann G, Koch W, Meisel DC, Wegener M, Diem M, García-Martín A, Pereira S, Busch K, Schilling J, Wehrspohn RB, Gösele U (2003) Diffraction Properties of two-dimensional photonic crystals. Appl Phys Lett 83:614–616

    Article  CAS  Google Scholar 

  81. Pickering C, Beale MIJ, Robbins DJ, Pearson PJ, Greef R (1984) Optical Studies of the Structure of porous silicon films formed in P-type degenerate and non-degenerate silicon. J Phys C 17:6535–6552

    Article  CAS  Google Scholar 

  82. Irani YD, Klebe S, McInnes SJP, Jasieniak M, Voelcker NH, Williams KA (2017) Oral mucosal epithelial cells grown on porous silicon membrane for transfer to the rat eye. Sci Rep 7:10042–1–10042-11

    Article  Google Scholar 

  83. Link J, Sailor M (2003) Smart dust: self-assembling, self-orienting photonic crystals of porous Si. PNAS 100:10607–10610

    Article  CAS  Google Scholar 

  84. Donato MG, Monaca MA, Faggio G, Stefano LD, Jones PH, Gucciardi PG, Marago OM (2011) Optical trapping of porous silicon nanoparticles. Nanotechnology 22:505704–1–505704-8

    Article  CAS  Google Scholar 

  85. McInnes SJP, Michl TD, Delalat B, Al-Bataineh SA, Coad BR, Vasilev K, Griesser HJ, Voelcker NH (2016) “Thunderstruck”: plasma-polymer-coated porous silicon microparticles as a controlled drug delivery system. ACS Appl Mater Interfaces 8:4467–4476

    Article  CAS  Google Scholar 

  86. Turner CT, McInnes SJP, Melville E, Cowin AJ, Voelcker NH (2016) Delivery of flightless I neutralizing antibody from porous silicon nanoparticles improves wound healing in diabetic mice. Adv Healthc Mater 6:1600707-1–1600707-13

    Google Scholar 

  87. Ciampi S, Böcking T, Kilian KA, Harper JB, Gooding JJ (2008) Click chemistry in mesoporous materials: functionalization of porous silicon rugate filters. Langmuir 24(11):5888–5892

    Article  CAS  Google Scholar 

  88. Sweetman MJ, Shearer CJ, Shapter JG, Voelcker NH (2011) dual silane surface functionalization for the selective attachment of human neuronal cells to porous silicon. Langmuir 27(15):9497–9503

    Article  CAS  Google Scholar 

  89. Coffer JL (2014) Porous silicon and related composites as functional tissue engineering scaffolds. In: Santos HA (ed) Porous silicon for biomedical applications. Woodhead, Cambridge

    Chapter  Google Scholar 

  90. Kilian KA, Bocking T, Gaus K, Gooding JJ (2008) Introducing distinctly different chemical functionalities onto the internal and external surfaces of mesoporous materials. Angew Chem Int Ed 47:2697–2699

    Article  CAS  Google Scholar 

  91. Wu C-C, Sailor MJ (2013) Selective functionalization of the internal and the external surfaces of mesoporous silicon by liquid masking. ACS Nano 7:3158–3167

    Article  CAS  Google Scholar 

  92. Song J, Sailor MJ (1999) Chemical modification of crystalline porous silicon surfaces. Comment Inorg Chem 21:69–84

    Article  CAS  Google Scholar 

  93. Lai M, Parish G, Dell J, Liu Y, Keating A (2011) Chemical resistance of porous silicon: photolithographic applications. Phys Stat Sol C 8:1847–1850

    Article  CAS  Google Scholar 

  94. Lai M, Parish G, Liu Y, Dell JM, Keating AJ (2011) Development of an alkaline-compatible porous-silicon photolithographic process. J Microelectromech Syst 20:418–423

    Article  CAS  Google Scholar 

  95. James TD, Keating A, Parish G, Musca CA (2009) Low temperature N2-based passivation technique for porous silicon thin films. Solid State Commun 149:1322–1325

    Article  CAS  Google Scholar 

  96. Salonen J, Bjorkqvist M, Laine E, Niinisto L (2004) Stabilization of porous silicon surface by thermal decomposition of acetylene. Appl Surf Sci 225:389–394

    Article  CAS  Google Scholar 

  97. Salonen J, Lehto V-P, Bjorkqvist M, Laine E, Niinisto L (2000) Studies of thermally-carbonized porous silicon surfaces. Phys Stat Sol A 182:123–126

    Article  CAS  Google Scholar 

  98. Bateman J, Eagling R, Worrall D, Horrocks B, Houlton A (1998) Alkylation of porous silicon by direct reaction with alkenes and alkynes. Angew Chem Int Ed 37:2638–2685

    Article  Google Scholar 

  99. Kim N, Laibinis P (1998) Derivatization of porous silicon by grignard reagents at room temperature. J Am Chem Soc 120:4516–4517

    Article  CAS  Google Scholar 

  100. Buriak JM, Stewart MP, Geders TW, Allen MJ, Choi HC, Smith J, Raftery D, Canham LT (1999) Lewis acid mediated hydrosilylation on porous silicon surfaces. J Am Chem Soc 121:11491–11502

    Article  CAS  Google Scholar 

  101. Stewart MP, Buriak JM (1998) Photopatterned hydrosilylation on porous silicon. Angew Chem Int Ed 37:3257–3260

    Article  CAS  Google Scholar 

  102. Sweetman MJ, Ronci M, Ghaemi SR, Craig JE, Voelcker NH (2012) porous silicon films micropatterned with bioelements as supports for mammalian cells. Adv Funct Mater 22:1158–1166

    Article  CAS  Google Scholar 

  103. Lees I, Lin H, Canaria C, Gurtner C, Sailor M, Miskelly G (2003) Chemical stability of porous silicon surfaces electrochemically modified with functional alkyl species. Langmuir 19:9812–9817

    Article  CAS  Google Scholar 

  104. Boukherroub R, Petit A, Loupy A, Chazalviel J-N, Ozanam F (2003) Microwave-Assisted chemical functionalization of hydrogen-terminated porous silicon surfaces. J Phys Chem B 107:13459–13462

    Article  CAS  Google Scholar 

  105. Sweetman MJ, McInnes SJP, Vasani RB, Guinan T, Blencowe A, Voelcker NH (2015) Rapid, metal-free hydrosilanisation chemistry for porous silicon surface modification. Chem Commun 51:10640–10643

    Article  CAS  Google Scholar 

  106. Stewart MP, Buriak JM (2000) Chemical and biological applications of porous silicon technology. Adv Mater 12:859–869

    Article  CAS  Google Scholar 

  107. Low SP, Williams KA, Canham LT, Voelcker NH (2006) Evaluation of mammalian cell adhesion on surface-modified porous silicon. Biomaterials 27(26):4538–4546

    Article  CAS  Google Scholar 

  108. Lowe RD, Szili EJ, Kirkbride P, Thissen H, Siuzdak G, Voelcker NH (2010) Combined immunocapture and laser desorption/ionization mass spectrometry on porous silicon. Anal Chem 82:4201–4208

    Article  CAS  Google Scholar 

  109. Vasani RB, McInnes SJP, Cole MA, Jani AMM, Ellis AV, Voelcker NH (2011) Stimulus-Responsiveness and Drug Release from Porous Silicon Films ATRP-Grafted with Poly(N-Isopropylacrylamide). Langmuir 27:7843–7853

    Article  CAS  Google Scholar 

  110. McInnes SJP, Lowe RD (2015) Biomedical uses of porous silicon. In: Losic D, Santos A (eds) Electrochemically engineered nanoporous materials. Springer, Switzerland 117–162 (Chapter 5)

    Chapter  Google Scholar 

  111. Salonen J, Lehto V-P (2008) Fabrication and chemical surface modification of mesoporous silicon for biomedical applications. Chem Eng J 137:162–172

    Article  CAS  Google Scholar 

  112. Clements LR, Wang P-Y, Harding F, Tsai W-B, Thissen H, Voelcker NH (2010) Mesenchymal stem cell attachment to peptide density gradients on porous silicon generated by electrografting. Phys Stat Solidi A 208:1440–1445

    Article  CAS  Google Scholar 

  113. Clements LR, Wang PY, Harding F, Tsai WB, Thissen H, Voelcker NH (2011) Mesenchymal stem cell attachment to peptide density gradients on porous silicon generated by electrografting. Phys Stat Solidi A 208(6):1440–1445

    Article  CAS  Google Scholar 

  114. Dancil K-PS, Greiner DP, Sailor MJ (1999) A porous silicon optical biosensor: detection of reversible binding of igg to a protein a-modified surface. J Am Chem Soc 121(34):7925–7930

    Article  CAS  Google Scholar 

  115. Lin V, Motesharei K, Dancil K, Sailor MJ, Ghadiri MR (1997) A porous silicon-based optical interferometric biosensor. Science 278:840–843

    Article  CAS  Google Scholar 

  116. Hart BR, Létant SE, Kane SR, Hadi MZ, Shields SJ, Reynolds JG (2003) New method for attachment of biomolecules to porous silicon. Chem Commun 3:322–323

    Article  CAS  Google Scholar 

  117. Drott J, Lindstrom K, Rosengren L, Laurell T (1997) Porous silicon as the carrier matrix in microstructured enzyme reactors yielding high enzyme activities. J Micromech Microeng 7:14–23

    Article  CAS  Google Scholar 

  118. Secret E, Smith K, Dubljevic V, Moore E, Macardle P, Delalat B, Rogers M-L, Johns TG, Durand J-O, Cunin F, Voelcker NH (2013) Antibody-functionalized porous silicon nanoparticles for vectorization of hydrophobic drugs. Adv Healthc Mater 2:718–727

    Article  CAS  Google Scholar 

  119. Guan B, Magenau A, Ciampi S, Gaus K, Reece PJ, Gooding JJ (2014) Antibody modified porous silicon microparticles for the selective capture of CELLS. Bioconjug Chem 25:1282–1289

    Article  CAS  Google Scholar 

  120. Holthausen D, Vasani RB, McInnes SJP, Ellis AV, Voelcker NH (2012) Polymerization-amplified optical DNA detection on porous silicon templates. ACS Macro Lett 1:919–921

    Article  CAS  Google Scholar 

  121. McInnes SJP, Voelcker NH (2012) Porous silicon-based nanostructured microparticles as degradable supports for solid-phase synthesis and release of oligonucleotides. Nanoscale Res Lett 7:1–10

    Article  Google Scholar 

  122. Shtenberg G, Massad-Ivanir N, Engin S, Sharon M, Fruk L, Segal E (2012) DNA-directed immobilization of horseradish peroxidase onto porous SiO2 optical transducers. Nanoscale Res Lett 7:443–448

    Article  CAS  Google Scholar 

  123. Letant SE, Hart BR, Kane SR, Hadi MZ, Shields SJ, Reynolds JG (2004) Enzyme immobilization on porous silicon surfaces. Adv Mater 16:689–693

    Article  CAS  Google Scholar 

  124. Hermanson GT (2008) Bioconjugate techniques. Elsevier, San Fransisco

    Google Scholar 

  125. Pike A, Patole S, Murray N, Ilyas T, Connolly B, Horrocks B, Houlton A (2003) Covalent and non-covalent attachment and patterning of polypyrrole at silicon surfaces. Adv Mater 15:254–257

    Article  CAS  Google Scholar 

  126. Yoon MS, Ahn KH, Cheung RW, Sohn H, Link JR, Cunin F, Sailor MJ (2003) Covalent crosslinking of 1-D photonic crystals of microporous Si by hydrosilylation and ring-opening metathesis polymerization. Chem Commun 6:680–681

    Article  CAS  Google Scholar 

  127. McInnes SJP, Thissen H, Choudhury NR, Voelcker NH (2009) New Biodegradable materials produced by ring opening polymerisation of poly(L-lactide) on porous silicon substrates. J Colloid Interface Sci 332:336–344

    Article  CAS  Google Scholar 

  128. McInnes SJP, Szili EJ, Al-Bataineh SA, Xu J, Alf ME, Gleason KK, Short RD, Voelcker NH (2012) Combination of iCVD and porous silicon for the development of a controlled drug delivery system. ACS Appl Mater Interfaces 4:3566–3574

    Article  CAS  Google Scholar 

  129. McInnes SJP, Szili EJ, Al-Bataineh SA, Vasani RB, Xu J, Alf ME, Gleason KK, Short RD, Voelcker NH (2016) Fabrication and characterization of a porous silicon drug delivery system with an initiated chemical vapor deposition temperature-responsive coating. Langmuir 32:301–308

    Article  CAS  Google Scholar 

  130. Climent E, Martínez-Máñez R, Maquieira Á, Sancenón F, Marcos MD, Brun EM, Soto J, Amorós P (2012) Antibody-capped mesoporous nanoscopic materials: design of a probe for the selective chromo-fluorogenic detection of finasteride. ChemistryOpen 1:251–259

    Article  CAS  Google Scholar 

  131. Sweetman MJ, Voelcker NH (2012) Chemically patterned porous silicon photonic crystals towards internally referenced organic vapour sensors. RSC Adv 2:4620–4622

    Article  CAS  Google Scholar 

  132. Guan B, Ciampi S, Le Saux G, Gaus K, Reece PJ, Gooding JJ (2011) Different functionalization of the internal and external surfaces in mesoporous materials for biosensing applications using “click” chemistry. Langmuir 27:328–334

    Article  CAS  Google Scholar 

  133. Bowditch AP, Waters K, Gale H, Rice P, Scott EAM, Canham LT, Reeves CL, Loni A, Cox TI (1998) In-vivo assessment of tissue compatibility and calcification of bulk and porous silicon. MRS Proc 536:149–154

    Article  Google Scholar 

  134. Rosengren A, Wallman L, Bengtsson M, Laurell T, Danielsen N, Bjursten L (2000) Tissue reactions to porous silicon: a comparative biomaterial study. Phys Stat Solidi A 182(1):527–531

    Article  CAS  Google Scholar 

  135. Anderson SHC, Elliott H, Wallis D, Canham L, Powell J (2003) Dissolution of different forms of partially porous silicon wafers under simulated physiological conditions. Phys Stat Solidi A 197(2):331–335

    Article  CAS  Google Scholar 

  136. Canham LT, Reeves C, Newey J, Houlton M, Cox T, Buriak J, Stewart M (1999) Derivatized mesoporous silicon with dramatically improved stability in simulated human blood plasma. Adv Mater 11(18):1505–1507

    Article  CAS  Google Scholar 

  137. Godin B, Gu J, Serda RE, Ferrati S, Liu X, Chiappini C, Tanaka T, Decuzzi P, Ferrari M (2008) Multistage mesoporous silicon-based nanocarriers: biocompatibility with immune cells and controlled degradation in physiological fluids. Controlled Release Newslett 25(4):9–11

    Google Scholar 

  138. Santos HA, Riikonen J, Salonen J, Mäkilä E, Heikkilä T, Laaksonen T, Peltonen L, Lehto V-P, Hirvonen J (2010) In vitro cytotoxicity of porous silicon microparticles: effect of the particle concentration. Surf Chem Size Acta Biomater 6(7):2721–2731

    Article  CAS  Google Scholar 

  139. Sailor MJ, Lee EJ (1997) Surface chemistry of luminescent silicon nanocrystallites. Adv Mater 9:783–793

    Article  CAS  Google Scholar 

  140. Godin B, Gu J, Serda RE, Bhavane R, Tasciotti E, Chiappini C, Liu X, Tanaka T, Decuzzi P, Ferrari M (2010) Tailoring the degradation kinetics of mesoporous silicon structures through pegylation. J Biomed Mater Res A 94A(4):1236–1243

    CAS  Google Scholar 

  141. Popplewell JF, King S, Day J, Ackrill P, Fifield L, Cresswell R, di Tada M, Liu K (1998) Kinetics of uptake and elimination of silicic acid by a human subject: a novel application of 32Si and accelerator mass spectrometry. J Inorg Biochem 69:177–180

    Article  CAS  Google Scholar 

  142. Canham LT (2007) Nanoscale semiconducting silicon as a nutritional food additive. Nanotechnology 18(18):185704-1–185704-6

    Article  CAS  Google Scholar 

  143. Bimbo LM, Mäkilä E, Laaksonen T, Lehto V-P, Salonen J, Hirvonen J, Santos HA (2011) Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. Biomaterials 32(10):2625–2633

    Article  CAS  Google Scholar 

  144. Low SP, Williams KA, Canham LT, Voelcker NH (2010) Generation of reactive oxygen species from porous silicon microparticles in cell culture medium. J Biomed Mater Res A 93(3):1124–1131

    Google Scholar 

  145. Bimbo LM, Mäkilä E, Raula J, Laaksonen T, Laaksonen P, Strommer K, Kauppinen EI, Salonen J, Linder MB, Hirvonen J, Santos HA (2011) Functional hydrophobin-coating of thermally hydrocarbonized porous silicon microparticles. Biomaterials 32:9089–9099

    Article  CAS  Google Scholar 

  146. Bimbo LM, Sarparanta M, Mäkilä E, Laaksonen T, Laaksonen P, Salonen J, Linder MB, Hirvonen J, Airaksinen AJ, Santos HA (2012) Cellular interactions of surface modified nanoporous silicon particles. Nanoscale 4:3184–3192

    Article  CAS  Google Scholar 

  147. Kumeria T, McInnes SJP, Maher S, Santos A (2017) Porous silicon for drug delivery applications and theranostics: recent advances, critical review and perspectives. Expert Opin Drug Deliv 14(12):1407–1422

    Article  CAS  Google Scholar 

  148. Bayliss SC, Heald R, Fletcher DI, Buckberry LD (1999) The culture of mammalian cells on nanostructured silicon. Adv Mater 11:318–321 (SRC—GoogleScholar)

    Article  CAS  Google Scholar 

  149. Mayne A, Bayliss S, Barr P, Tobin M, Buckberry L (2000) Biologically interfaced porous silicon devices. Phys Stat Solidi A 182(1):505–513

    Article  CAS  Google Scholar 

  150. Mäkilä E, Bimbo LM, Kaasalainen M, Herranz B, Airaksinen AJ, Heinonen M, Kukk E, Hirvonen J, Santos HlA, Salonen J (2012) Amine modification of thermally carbonized porous silicon with silane coupling chemistry. Langmuir 28(39):14045–14054

    Article  CAS  Google Scholar 

  151. Bimbo LM, Sarparanta M, Mäkilä E, Laaksonen T, Laaksonen P, Salonen J, Linder MB, Hirvonen J, Airaksinen AJ, Santos HA (2012) Cellular interactions of surface modified nanoporous silicon particles. Nanoscale 4(10):3184–3192

    Article  CAS  Google Scholar 

  152. Kilian KA, Böcking T, Ilyas S, Gaus K, Jessup W, Gal M, Gooding JJ (2007) Forming antifouling organic multilayers on porous silicon rugate filters towards in vivo/ex vivo biophotonic devices. Adv Funct Mater 17:2884–2890

    Article  CAS  Google Scholar 

  153. Wu EC, Park JH, Park J, Segal E, Cunin F, Sailor MJ (2008) Oxidation-triggered release of fluorescent molecules or drugs from mesoporous Si microparticles. ACS Nano 2(11):2401–2409

    Article  CAS  Google Scholar 

  154. Gizzatov A, Stigliano C, Ananta JS, Sethi R, Xu R, Guven A, Ramirez M, Shen H, Sood A, Ferrari M, Wilson LJ, Liu X, Decuzzi P (2014) Geometrical confinement of Gd(Dota) molecules within mesoporous silicon nanoconstructs for MR imaging of cancer. Cancer Lett 352:1–5

    Article  CAS  Google Scholar 

  155. Serda RE, Mack A, Pulikkathara M, Zaske AM, Chiappini C, Fakhoury JR, Webb D, Godin B, Conyers JL, Liu XW, Bankson JA, Ferrari M (2010) Cellular association and assembly of a multistage delivery system. Small 6:1329–1340

    Article  CAS  Google Scholar 

  156. Sarparanta M, Heikkila T, Salonen J, Kukk E, Lehto V, Santos HA, Hirvonen J, Airaksinen AJ (2011) 18F-labeled modified porous silicon particles for investigation of drug delivery carrier distribution in vivo with positron emission tomography. Mol Pharm 8:1799–1806

    Article  CAS  Google Scholar 

  157. Schwartz MP, Derfus AM, Alvarez SD, Bhatia SN, Sailor MJ (2006) The smart petri dish: a nanostructured photonic crystal for real-time monitoring of living cells. Langmuir 22(16):7084–7090

    Article  CAS  Google Scholar 

  158. Tanaka T, Godin B, Bhavane R, Nieves-Alicea R, Gu J, Liu X, Chiappini C, Fakhoury J, Amra S, Ewing A (2010) In vivo evaluation of safety of nanoporous silicon carriers following single and multiple dose intravenous administrations in mice. Int J Pharm 402(1):190–197

    Article  CAS  Google Scholar 

  159. Koh Y, Jang S, Kim J, Kim S, Ko Y, Cho S, Sohn H (2008) Dbr pSi/Pmma composite materials for smart patch application. Colloids Surf A 313–314:328–331

    Article  CAS  Google Scholar 

  160. Liu D, Shahbazi M-A, Bimbo LM, Hirvonen J, Santos HA (2014) Biocompatibility of porous silicon for biomedical applications. In: Santon HA (ed) Porous silicon for biomedical applications. Woodhead. pp 129–181

    Chapter  Google Scholar 

  161. Serda RE, Ferrati S, Godin B, Tasciotti E, Liu X, Ferrari M (2009) Mitotic trafficking of silicon microparticles. Nanoscale 1:250–259

    Article  CAS  Google Scholar 

  162. Liu D, Shahbazi M, Bimbo L, Hirvonen J, Santos H (2014) Biocompatibility of porous silicon for biomedical applications, porous silicon for biomedical applications. Woodhead Publishing, Cambridge, pp 129–181

    Book  Google Scholar 

  163. Low SP, Voelcker NH, Canham LT, Williams KA (2009) The biocompatibility of porous silicon in tissues of the eye. Biomaterials 30:2873–2880

    Article  CAS  Google Scholar 

  164. Bowditch A, Waters K, Gale H, Rice P, Scott E, Canham L, Reeves C, Loni A, Cox T (1998) In-vivo assessment of tissue compatibility and calcification of bulk and porous silicon. MRS Online Proc Libr Arch 536

    Google Scholar 

  165. Sarparanta M, Mäkilä E, Heikkilä T, Salonen J, Kukk E, Lehto V-P, Santos HA, Hirvonen J, Airaksinen AJ (2011) 18f-labeled modified porous silicon particles for investigation of drug delivery carrier distribution in vivo with positron emission tomography. Mol Pharm 8(5):1799–1806

    Article  CAS  Google Scholar 

  166. Dalilottojari A, Tong WY, McInnes SJP, Voelcker NH (2016) Biocompatible and bioactive porous silicon materials. In: Korotcenkov G (ed) Porous silicon: from formation to application, part 3 biomedical applications. Taylor & Francis: Boca Raton. pp 319–335 (Chapter 17)

    Google Scholar 

  167. Yokoi K, Godin B, Oborn CJ, Alexander JF, Liu X, Fidler IJ, Ferrari M (2013) Porous silicon nanocarriers for dual targeting tumor associated endothelial cells and macrophages in stroma of orthotopic human pancreatic cancers. Cancer Lett 334(2):319–327

    Article  CAS  Google Scholar 

  168. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    CAS  Google Scholar 

  169. Jiang W, Kim BY, Rutka JT, Chan WC (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3:145–150

    Article  CAS  Google Scholar 

  170. Lundquist CM, Loo C, Meraz IM, Cerda JDL, Liu X, Serda RE (2014) Characterization of free and porous silicon-encapsulated superparamagnetic iron oxide nanoparticles as platforms for the development of theranostic vaccines. Med Sci 2:51–69

    CAS  Google Scholar 

  171. Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF (2008) Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 38:1404–1413

    Article  CAS  Google Scholar 

  172. Hudson SP, Padera RF, Langer R, Kohane DS (2008) The biocompatibility of mesoporous silicates. Biomaterials 29(30):4045–4055

    Article  CAS  Google Scholar 

  173. Kovalainen M, Mönkäre J, Kaasalainen M, Riikonen J, Lehto V-P, Salonen J, Herzig K-H, Järvinen K (2013) Development of porous silicon nanocarriers for parenteral peptide delivery. Mol Pharm 10:353–359

    Article  CAS  Google Scholar 

  174. Santos HA, Hirvonen J (2012) Nanostructured porous silicon materials: potential candidates for improving drug delivery. Nanomedicine 7(9):1281–1284

    Article  CAS  Google Scholar 

  175. Santos HA, Salonen J, Bimbo LM, Lehto V-P, Peltonen L, Hirvonen J (2011) Mesoporous materials as controlled drug delivery formulations. J Drug Del Sci Tech 21(2):139–155

    Article  CAS  Google Scholar 

  176. Institute NC What is cancer. https://www.cancer.gov/about-cancer/understanding/what-is-cancer. Accessed December 4

  177. Organization WH Cancer. http://www.who.int/mediacentre/factsheets/fs297/en/. Accessed December 4

  178. Yu MK, Park J, Jon S (2012) Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2(1):3–44

    Article  CAS  Google Scholar 

  179. Buchsbaum DJ, Rogers BE, Khazaeli MB, Mayo MS, Milenic DE, Kashmiri SV, Anderson CJ, Chappell LL, Brechbiel MW, Curiel DT (1999) Targeting strategies for cancer radiotherapy. Clin Cancer Res 5(10 Suppl):3048s–3055s

    CAS  Google Scholar 

  180. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591

    Article  CAS  Google Scholar 

  181. Alexiou C, Schmid RJ, Jurgons R, Kremer M, Wanner G, Bergemann C, Huenges E, Nawroth T, Arnold W, Parak FG (2006) Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur Biophys J 35(5):446–450

    Article  CAS  Google Scholar 

  182. Vaccari L, Canton D, Zaffaroni N, Villa R, Tormen M, di Fabrizio E (2006) Porous silicon as drug carrier for controlled delivery of doxorubicin anticancer agent. Microelectron Eng 83(4):1598–1601

    Article  CAS  Google Scholar 

  183. Gu L, Park J-H, Duong KH, Ruoslahti E, Sailor MJ (2010) Magnetic luminescent porous silicon microparticles for localized delivery of molecular drug payloads. Small 6(22):2546–2552

    Article  CAS  Google Scholar 

  184. Chhablani J, Nieto A, Hou H, Wu EC, Freeman WR, Sailor MJ, Cheng L (2013) Oxidized porous silicon particles covalently grafted with daunorubicin as a sustained intraocular drug delivery system. Invest Ophthalmol Vis Sci 54(2):1268–1279

    Article  CAS  Google Scholar 

  185. Hou H, Nieto A, Ma F, Freeman WR, Sailor MJ, Cheng L (2014) Tunable sustained intravitreal drug delivery system for daunorubicin using oxidized porous silicon. J Controlled Release 178(Supplement C):46–54

    Article  CAS  Google Scholar 

  186. Nan K, Ma F, Hou H, Freeman WR, Sailor MJ, Cheng L (2014) Porous silicon oxide-plga composite microspheres for sustained ocular delivery of daunorubicin. Acta Biomater 10(8):3505–3512

    Article  CAS  Google Scholar 

  187. Hou H, Huffman K, Rios S, Freeman WR, Sailor MJ, Cheng L (2015) A novel approach of daunorubicin application on formation of proliferative retinopathy using a porous silicon controlled delivery system: pharmacodynamics. Invest Ophthalmol Vis Sci 56(4):2755–2763

    Article  CAS  Google Scholar 

  188. Wu EC, Andrew JS, Buyanin A, Kinsella JM, Sailor MJ (2011) Suitability of porous silicon microparticles for the long-term delivery of redox-active therapeutics. Chem Commun 47(20):5699–5701

    Article  CAS  Google Scholar 

  189. Li X, St. John J, Coffer JL, Chen Y, Pinizzotto RF, Newey J, Reeves C, Canham LT (2000) Porosified silicon wafer structures impregnated with platinum anti-tumor compounds: fabrication, characterization, and diffusion studies. Biomed Microdevices 2(4):265–272

    Google Scholar 

  190. Coffer JL, Montchamp J-L, Aimone JB, Weis RP (2003) Routes to calcified porous silicon: implications for drug delivery and biosensing. Phys Stat Solidi A 197(2):336–339

    Article  CAS  Google Scholar 

  191. Park JS, Kinsella JM, Jandial DD, Howell SB, Sailor MJ (2011) Cisplatin-loaded porous Si microparticles capped by electroless deposition of platinum. Small 7(14):2061–2069

    Article  CAS  Google Scholar 

  192. Xiao L, Gu L, Howell SB, Sailor MJ (2011) Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells. ACS Nano 5(5):3651–3659

    Article  CAS  Google Scholar 

  193. Hong C, Lee J, Zheng H, Hong SS, Lee C (2011) Porous silicon nanoparticles for cancer photothermotherapy. Nanoscale Res Lett 6(1):321-1–321-8

    Article  CAS  Google Scholar 

  194. Lee C, Kim H, Hong C, Kim M, Hong SS, Lee DH, Lee WI (2008) Porous silicon as an agent for cancer thermotherapy based on near-infrared light irradiation. J Mater Chem 18(40):4790–4795

    Article  CAS  Google Scholar 

  195. Savage DJ, Liu X, Curley SA, Ferrari M, Serda RE (2013) Porous silicon advances in drug delivery and immunotherapy. Curr Opin Pharmacol 13(5):834–841

    Article  CAS  Google Scholar 

  196. Godin B, Chiappini C, Srinivasan S, Alexander JF, Yokoi K, Ferrari M, Decuzzi P, Liu X (2012) Discoidal porous silicon particles: fabrication and biodistribution in breast cancer bearing mice. Adv Funct Mater 22(20):4225–4235

    Article  CAS  Google Scholar 

  197. Blanco E, Sangai T, Hsiao A, Ferrati S, Bai L, Liu X, Meric-Bernstam F, Ferrari M (2013) Multistage delivery of chemotherapeutic nanoparticles for breast cancer treatment. Cancer Lett 334(2):245–252

    Article  CAS  Google Scholar 

  198. Wang CF, Sarparanta MP, Mäkilä EM, Hyvönen MLK, Laakkonen PM, Salonen JJ, Hirvonen JT, Airaksinen AJ, Santos HA (2015) Multifunctional porous silicon nanoparticles for cancer theranostics. Biomaterials 48(Supplement C):108–118

    Article  CAS  Google Scholar 

  199. Kinnari PJ, Hyvönen MLK, Mäkilä EM, Kaasalainen MH, Rivinoja A, Salonen JJ, Hirvonen JT, Laakkonen PM, Santos HA (2013) Tumour homing peptide-functionalized porous silicon nanovectors for cancer therapy. Biomaterials 34(36):9134–9141

    Article  CAS  Google Scholar 

  200. Shahbazi M-A, Shrestha N, Mäkilä E, Araújo F, Correia A, Ramos T, Sarmento B, Salonen J, Hirvonen J, Santos HA (2015) A Prospective cancer chemo-immunotherapy approach mediated by synergistic Cd326 targeted porous silicon nanovectors. Nano Res 8(5):1505–1521

    Article  CAS  Google Scholar 

  201. Almeida PV, Shahbazi M-A, Makila E, Kaasalainen M, Salonen J, Hirvonen J, Santos HA (2014) Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors. Nanoscale 6(17):10377–10387

    Article  CAS  Google Scholar 

  202. Kong F, Zhang X, Zhang H, Qu X, Chen D, Servos M, Mäkilä E, Salonen J, Santos HA, Hai M, Weitz DA (2015) Inhibition of multidrug resistance of cancer cells by co-delivery of DNA nanostructures and drugs using porous silicon Nanoparticles@Giant Liposomes. Adv Funct Mater 25(22):3330–3340

    Article  CAS  Google Scholar 

  203. Puvanakrishnan P, Park J, Chatterjee D, Krishnan S, Tunnell JW (2012) In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy. Int J Nanomed 7:1251–1258 (SRC—GoogleScholar)

    Google Scholar 

  204. Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, West JL, Drezek RA (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7:169–183

    Article  CAS  Google Scholar 

  205. Chatterjee DK, Diagaradjane P, Krishnan S (2011) Nanoparticle-mediated hyperthermia in cancer therapy. Ther Deliv 2:1001–1014

    Article  CAS  Google Scholar 

  206. Hong C, Lee J, Son M, Hong SS, Lee C (2011) In-vivo cancer cell destruction using porous silicon nanoparticles. Anticancer Drugs 22:971–977

    CAS  Google Scholar 

  207. Shen H, You J, Zhang G, Ziemys A, Li Q, Bai L, Deng X, Erm DR, Liu X, Li C, Ferrari M (2012) Cooperative, nanoparticle-enabled thermal therapy of breast cancer. Adv Healthc Mater 1:84–89

    Article  CAS  Google Scholar 

  208. Ma M, Chen H, Chen Y, Wang X, Chen F, Cui X, Shi J (2012) Au capped magnetic core/mesoporous silica shell nanoparticles for combined photothermo-/chemo-therapy and multimodal imaging. Biomaterials 33:989–998

    Article  CAS  Google Scholar 

  209. Robertson CA, Evans DH, Abrahamse H Photodynamic therapy (Pdt): a short review on cellular mechanisms and cancer research applications for Pdt. J Photochem Photobiol B Biol 96:1–8

    Article  CAS  Google Scholar 

  210. Canham LT, Ferguson F (2014) Porous silicon in branchytherapy. In: Canham LT (ed) Handbook of porous silicon. Springer International Publishing, Switzerland, pp 1−7

    Google Scholar 

  211. Zhang K, Loong SLE, Connor S, Sidney Yu SWK, Tan SY, Ng RTH, Lee KM, Canham LT, Chow PKH (2005) Complete tumor response following intratumoral 32P BioSilicon on human hepatocellular and pancreatic carcinoma xenografts in nude mice. Clin Cancer Res 11:7532–7537

    Article  CAS  Google Scholar 

  212. Goh AS-W, Chung AY-F, Lo RH-G, Lau T-N, Yu SW-K, Chng M, Satchithanantham S, Loong SL-E, Ng DC-E, Lim B-C, Connor S, Chow PK-H (2007) A novel approach to brachytherapy in hepatocellular carcinoma using a Phosphorous32 (32P) brachytherapy delivery device—a first-in-man study. Int J Radiat Oncol Biol Phys 67:786–792

    Article  CAS  Google Scholar 

  213. Bonanno LM, Kwong TC, DeLouise LA (2010) Label-free porous silicon immunosensor for broad detection of opiates in a blind clinical study and results comparison to commercial analytical chemistry techniques. Anal Chem 82:9711–9718

    Article  CAS  Google Scholar 

  214. Bonanno LM, Segal E (2011) Nanostructured porous silicon-polymer-based hybrids: from biosensing to drug delivery. Nanomed 6:1755–1770

    Article  CAS  Google Scholar 

  215. Pacholski C, Sartor M, Sailor MJ, Cunin F, Miskelly GM (2005) Biosensing using porous silicon double-layer interferometers: reflective interferometric fourier transform spectroscopy. J Am Chem Soc 127:11636–11645

    Article  CAS  Google Scholar 

  216. Alvarez SD, Schwartz MP, Migliori B, Rang CU, Chao L, Sailor MJ (2007) Using a porous silicon photonic crystal for bacterial cell-based biosensing. Phys Stat Solidi A 204:1439–1443

    Article  CAS  Google Scholar 

  217. Janshoff A, Dancil K-PS, Steinem C, Greiner DP, Lin VSY, Gurtner C, Motesharei K, Sailor MJ, Ghadiri MR (1998) Macroporous P-type silicon fabry−perot layers. Fabrication, characterization, and applications in biosensing. J Am Chem Soc 120:12108–12116

    Article  CAS  Google Scholar 

  218. Tasciotti E, Godin B, Martinez JO, Chiappini C, Bhavane R, Liu X, Ferrari M (2011) Near-infrared imaging method for the in vivo assessment of the biodistribution of nanoporous silicon particles. Mol Imaging 10:56–58

    Article  CAS  Google Scholar 

  219. Ahire JH, Wang Q, Coxon PR, Malhotra G, Brydson R, Chen R, Chao Y (2012) Highly luminescent and nontoxic amine-capped nanoparticles from porous silicon: synthesis and their use in biomedical imaging. ACS Appl Mater Interfaces 4:3285–3239

    Article  CAS  Google Scholar 

  220. Sinha S, Tong WY, Williamson NH, McInnes SJP, Puttick S, Cifuentes-Rius A, Bhardwaj R, Plush SE, Voelcker NH (2017) Novel Gd-loaded silicon nanohybrid: a potential EGFR expressing cancer cell targeting MRI contrast agent. ACS Appl Mater Interfaces. Just Accepted Manuscript, https://doi.org/10.1021/acsami.7b14538

  221. Kallinen AM, Sarparanta MP, Liu D, Salonen JJ, Hirvonen JT, Santos HA, Airaksinen AJ (2014) In vivo evaluation of porous silicon and porous silicon solid lipid nanocomposites for passive targeting and imaging. Mol Pharm 11:2876–2886

    Article  CAS  Google Scholar 

  222. Sarparanta M, Bimbo LM, Laaksonen TJ, Laaksonen P, Nyman M, Salonen J, Linder MB, Hirvonen J, Santos HA, Airaksinen AJ, Plasma S (2012) Intravenous Delivery of hydrophobin-functionalized porous silicon nanoparticles: adsorption and biodistribution. Mol Pharm 9:654–663

    Article  CAS  Google Scholar 

  223. Parodi A, Quattrocchi N, van de Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, Brown BS, Khaled SZ, Yazdi IK, Enzo MV, Isenhart L, Ferrari M, Tasciotti E (2013) Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 8:61–68

    Article  CAS  Google Scholar 

  224. van de Ven AL, Kim P, Haley O, Fakhoury JR, Adriani G, Schmulen J, Moloney P, Hussain F, Ferrari M, Liu X, Yun S, Decuzzi P (2012) Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution. J Control Release 158:148–155

    Article  CAS  Google Scholar 

  225. Gallach D, Sanchez GR, Noval AM, Silvan MM, Ceccone G, Palma RJM, Costa VT, Duart JMM, Engineering B (2010) Materials science and mater. Sci Eng B 169:123–127

    Article  CAS  Google Scholar 

  226. Santos HA (2014) Porous silicon for biomedical applications. Woodhead Publishing Limited

    Google Scholar 

  227. Tasciotti E, Liu X, Bhavane R, Plant K, Leonard AD, Price BK, Cheng MM-C, Decuzzi P, Tour JM, Robertson F, Ferrari M (2008) Mesoporous Silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nanotechnol 3:151–157

    Article  CAS  Google Scholar 

  228. Chiappini C, Tasciotti E, Fakhoury JR, Fine D, Pullan L, Wang Y-C, Fu L, Liu X, Ferrari M (2010) Tailored porous silicon microparticles: fabrication and properties. ChemPhysChem 11:1029–1035

    Article  CAS  Google Scholar 

  229. Hernandez M, Recio G, Martin-Palma RJ, Garcia-Ramos JV, Domingo C, Sevilla P (2012) Surface enhanced fluorescence of anti-tumoral drug emodin adsorbed on silver nanoparticles and loaded on porous silicon. Nanoscale Res Lett 7:364–370

    Article  CAS  Google Scholar 

  230. Kirui DK, Ferrari M (2015) Intravital microscopy imaging approaches for image-guided drug delivery systems. Curr Drug Targets 16(6):528–541

    Article  CAS  Google Scholar 

  231. Ananta JS, Godin B, Sethi R, Moriggi L, Liu X, Serda RE, Krishnamurthy R, Muthupillai R, Bolskar RD, Helm L, Ferrari M, Wilson LJ, Decuzzi P (2010) Geometrical Confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast. Nature Nanotechnol 5:815–821

    Article  CAS  Google Scholar 

  232. Nissinen T, Näkki S, Latikka M, Heinonen M, Liimatainen T, Xu W, Ras RHA, Gröhn O, Riikonen J, Lehto V-P (2014) Facile Synthesis of Biocompatible Superparamagnetic Mesoporous Nanoparticles for Imageable Drug Delivery. Micropor Mesopor Mat 195:2–8

    Article  CAS  Google Scholar 

  233. Santos HA, Bimbo LM, Herranz B, Shahbazi M-A, Hirvonen J, Salonen J (2012) Nanostructured porous silicon in preclinical imaging: moving from bench to bedside. J Mater Res 28:152–164

    Article  CAS  Google Scholar 

  234. Sarparanta MP, Bimbo LM, Mäkilä EM, Salonen JJ, Laaksonen PH, Helariutta AMK, Linder MB, Hirvonen JT, Laaksonen TJ, Santos HA, Airaksinen AJ (2012) The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials 33(11):3353–3362

    Article  CAS  Google Scholar 

  235. Rytkönen J, Miettinen R, Kaasalainen M, Lehto VP, Salonen J, Närvänen A (2012) Functionalization of mesoporous silicon nanoparticles for targeting and bioimaging purposes. J Nanomat 2012(Article ID 896562):1–9

    Article  CAS  Google Scholar 

  236. Bimbo LM, Sarparanta M, Santos HA, Airaksinen AJ, Makila E, Laaksonen T, Peltonen L, Lehto V-P, Hirvonen J, Salonen J (2010) Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. ACS Nano 4(6):3023–3032

    Article  CAS  Google Scholar 

  237. Huhtala T, Jalanko A, Kaasalainen M, Salonen J, Riikonen R, Complexed IGF (2012) Biodistribution and pharmacokinetics in infantile neuronal ceroid lipofuscinosis. J Drug Deliv 2012:626417

    Article  CAS  Google Scholar 

  238. Gu L, Park J, Duong KH, Ruoslahti E, Sailor MJ (2010) Magnetic Luminescent porous silicon microparticles for localized delivery of molecular drug payloads. Small 6:2546–2552

    Article  CAS  Google Scholar 

  239. Noval A, Vaquero V, Torres-Costa V, Gallach D, Ferro-Llanos V, Serrano JJ, Ruiz JP, Pozo F, Palma RJ (2011) Hybrid luminescent/magnetic nanostructured porous silicon particles for biomedical applications. J Biomed Opt 16:025002–025008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McInnes, S.J.P., Santos, A., Kumeria, T. (2018). Porous Silicon Particles for Cancer Therapy and Bioimaging. In: Gonçalves, G., Tobias, G. (eds) Nanooncology. Nanomedicine and Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-89878-0_9

Download citation

Publish with us

Policies and ethics