Skip to main content

Liposomes-Based Nanoparticles for Cancer Therapy and Bioimaging

  • Chapter
  • First Online:
Nanooncology

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

Liposome, one of the most well-established nanomedicines in cancer therapy and bioimaging, is a great delivery system with their flexibility and versatility. Liposomes resemble the biological cell membrane, adopting a lipid bilayer structure which provides protection and solubilisation of both hydrophilic and hydrophobic agents. A wide range of therapeutic drugs and imaging agents can, therefore, be encapsulated and delivered. Cationic liposomes, for example, are one of the popular choices of non-viral vector for the fast-growing field of gene therapy. Their physiochemical properties can be engineered and modified to suit specific applications simply by changing the lipid components and the corresponding ratio. This also expands the potential of having additional functionalities such as long-circulating, targeting and stimuli-responsiveness. In addition to delivering therapeutics and imaging agents, interactions between the lipids and the payloads can be beneficial for imaging enhancement. Stimuli-sensitive liposomes can be used along with diagnostic and therapeutics for image-guided drug delivery, providing real-time monitoring of the drug delivery process as well as spatiotemporal control over the release of drugs. Liposomes will be expected to be a promising delivery system and tool for personalised medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bozzuto G, Molinari A (2015) Liposomes as nanomedical devices. Int J Nanomed 10:975–999. https://doi.org/10.2147/IJN.S68861

    Article  CAS  Google Scholar 

  2. Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65:36–48. https://doi.org/10.1016/j.addr.2012.09.037

    Article  CAS  Google Scholar 

  3. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J (2015) Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Controlled Release 200:138–157. https://doi.org/10.1016/j.jconrel.2014.12.030

    Article  CAS  Google Scholar 

  4. Sercombe L, Veerati T, Moheimani F et al (2015) Advances and challenges of liposome assisted drug delivery. Front Pharmacol 6:1–13. https://doi.org/10.3389/fphar.2015.00286

    Article  CAS  Google Scholar 

  5. Chang H, Yeh M-K (2012) Clinical development of liposome-based drug: formulation, characterization, and therapeutic efficacy. Int J Nanomed 7:49–60. https://doi.org/10.2147/IJN.S26766

    Article  CAS  Google Scholar 

  6. Simões S, Filipe A, Faneca H et al (2005) Cationic liposomes for gene delivery. Expert Opin Drug Deliv 2:237–254. https://doi.org/10.1517/17425247.2.2.237

    Article  Google Scholar 

  7. Xing H, Hwang K, Lu Y (2016) Recent developments of liposomes as nanocarriers for theranostic applications. Theranostics 6:1336–1352. https://doi.org/10.7150/thno.15464

    Article  CAS  Google Scholar 

  8. Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252. https://doi.org/10.1016/S0022-2836(65)80093-6

    Article  CAS  Google Scholar 

  9. Peetla C, Stine A, Labhasetwar V (2009) Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. Mol Pharm 6:1264–1276. https://doi.org/10.1021/mp9000662

    Article  CAS  Google Scholar 

  10. Matos C, Moutinho C, Lobão P (2012) Liposomes as a model for the biological membrane: studies on daunorubicin bilayer interaction. J Membr Biol 245:69–75. https://doi.org/10.1007/s00232-011-9414-2

    Article  CAS  Google Scholar 

  11. Al-Jamal WT, Kostarelos K (2011) Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res 44:1094–1104. https://doi.org/10.1021/ar200105p

    Article  CAS  Google Scholar 

  12. Ulrich AS (2002) Biophysical aspects of using liposomes as delivery vehicles. Biosci Rep 22:129–150. https://doi.org/10.1023/A:1020178304031

    Article  CAS  Google Scholar 

  13. Li J, Wang X, Zhang T et al (2014) A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci 10:81–98. https://doi.org/10.1016/j.ajps.2014.09.004

    Article  CAS  Google Scholar 

  14. Senior J, Gregoriadis G (1982) Is half-life of circulating liposomes determined by changes in their permeability? FEBS Lett 145:109–114. https://doi.org/10.1016/0014-5793(82)81216-7

    Article  CAS  Google Scholar 

  15. Xu H, Ye F, Hu M et al (2014) Influence of phospholipid types and animal models on the accelerated blood clearance phenomenon of PEGylated liposomes upon repeated injection. Drug Deliv 7544:1–10. https://doi.org/10.3109/10717544.2014.885998

    Article  CAS  Google Scholar 

  16. Ali MH, Moghaddam B, Kirby DJ et al (2013) The role of lipid geometry in designing liposomes for the solubilisation of poorly water soluble drugs. Int J Pharm 453:225–232. https://doi.org/10.1016/j.ijpharm.2012.06.056

    Article  CAS  Google Scholar 

  17. Mohammed AR, Weston N, Coombes AGA et al (2004) Liposome formulation of poorly water soluble drugs: optimisation of drug loading and ESEM analysis of stability. Int J Pharm 285:23–34. https://doi.org/10.1016/j.ijpharm.2004.07.010

    Article  CAS  Google Scholar 

  18. Samuni AM, Lipman A, Barenholz Y (2000) Damage to liposomal lipids: protection by antioxidants and cholesterol- mediated dehydration. Chem Phys Lipids 105:121–134. https://doi.org/10.1016/S0009-3084(99)00136-X

    Article  CAS  Google Scholar 

  19. Barenholz Y (2001) Liposome application: problems and prospects. Curr Opin Colloid Interface Sci 6:66–77. https://doi.org/10.1016/S1359-0294(00)00090-X

    Article  CAS  Google Scholar 

  20. Shim G, Kim M-G, Park JY, Oh Y-K (2013) Application of cationic liposomes for delivery of nucleic acids. Asian J Pharm Sci 8:72–80. https://doi.org/10.1016/j.ajps.2013.07.009

    Article  CAS  Google Scholar 

  21. Balazs DA, Godbey W (2011) Liposomes for use in gene delivery. J Drug Deliv 2011:326497. https://doi.org/10.1155/2011/326497

    Article  CAS  Google Scholar 

  22. Klibanov AL, Maruyama K, Torchilin VP, Huang L (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268:235–237. https://doi.org/10.1016/0014-5793(90)81016-H

    Article  CAS  Google Scholar 

  23. Takeuchi H, Kojima H, Yamamoto H, Kawashima Y (2001) Evaluation of circulation profiles of liposomes coated with hydrophilic polymers having different molecular weights in rats. J Controlled Release 75:83–91. https://doi.org/10.1016/S0168-3659(01)00368-6

    Article  CAS  Google Scholar 

  24. Torchilin VP, Levchenko TS, Whiteman KR et al (2001) Amphiphilic poly-N-vinylpyrrolidones: synthesis, properties and liposome surface modification. Biomaterials 22:3035–3044. https://doi.org/10.1016/S0142-9612(01)00050-3

    Article  CAS  Google Scholar 

  25. Hamill RJ (2013) Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs 73:919–934. https://doi.org/10.1007/s40265-013-0069-4

    Article  CAS  Google Scholar 

  26. O’Brien MER (2004) Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYXTM/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol 15:440–449. https://doi.org/10.1093/annonc/mdh097

    Article  Google Scholar 

  27. Rafiyath SM, Rasul M, Lee B et al (2012) Comparison of safety and toxicity of liposomal doxorubicin vs. conventional anthracyclines: a meta-analysis. Exp Hematol Oncol 1:10. https://doi.org/10.1186/2162-3619-1-10

    Article  CAS  Google Scholar 

  28. Gubernator J (2011) Active methods of drug loading into liposomes: recent strategies for stable drug entrapment and increased in vivo activity. Expert Opin Drug Deliv 8:565–580. https://doi.org/10.1517/17425247.2011.566552

    Article  CAS  Google Scholar 

  29. Gabizon A, Goren D, Horowitz AT et al (1997) Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals. Adv Drug Deliv Rev 24:337–344. https://doi.org/10.1016/S0169-409X(96)00476-0

    Article  CAS  Google Scholar 

  30. Zhigaltsev IV, Maurer N, Akhong QF et al (2005) Liposome-encapsulated vincristine, vinblastine and vinorelbine: a comparative study of drug loading and retention. J Controlled Release 104:103–111. https://doi.org/10.1016/j.jconrel.2005.01.010

    Article  CAS  Google Scholar 

  31. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160. https://doi.org/10.1038/nrd1632

    Article  CAS  Google Scholar 

  32. Kulshrestha P, Gogoi M, Bahadur D, Banerjee R (2012) In vitro application of paclitaxel loaded magnetoliposomes for combined chemotherapy and hyperthermia. Colloids Surf, B 96:1–7. https://doi.org/10.1016/j.colsurfb.2012.02.029

    Article  CAS  Google Scholar 

  33. Leung SJ, Romanowski M (2012) Light-activated content release from liposomes. Theranostics 2:1020–1036. https://doi.org/10.7150/thno.4847

    Article  CAS  Google Scholar 

  34. Simões S, Nuno Moreira J, Fonseca C et al (2004) On the formulation of pH-sensitive liposomes with long circulation times. Adv Drug Deliv Rev 56:947–965. https://doi.org/10.1016/j.addr.2003.10.038

    Article  CAS  Google Scholar 

  35. Candiani G, Pezzoli D, Ciani L et al (2010) Bioreducible liposomes for gene delivery: from the formulation to the mechanism of action. PLoS ONE 5:1–8. https://doi.org/10.1371/journal.pone.0013430

    Article  CAS  Google Scholar 

  36. Linderoth L, Peters GH, Madsen R, Andresen TL (2009) Drug delivery by an enzyme-mediated cyclization of a lipid prodrug with unique bilayer-formation properties. Angew Chemie Int Ed 48:1823–1826. https://doi.org/10.1002/anie.200805241

    Article  CAS  Google Scholar 

  37. Passero FC, Grapsa D, Syrigos KN, Saif MW (2016) The safety and efficacy of Onivyde (irinotecan liposome injection) for the treatment of metastatic pancreatic cancer following gemcitabine-based therapy. Expert Rev Anticancer Ther 16:697–703. https://doi.org/10.1080/14737140.2016.1192471

    Article  CAS  Google Scholar 

  38. Mantripragada S (2002) A lipid based depot (DepoFoam® technology) for sustained release drug delivery. Prog Lipid Res 41:392–406. https://doi.org/10.1016/S0163-7827(02)00004-8

    Article  CAS  Google Scholar 

  39. Silverman JA, Deitcher SR (2013) Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol 71:555–564. https://doi.org/10.1007/s00280-012-2042-4

    Article  CAS  Google Scholar 

  40. Akbarzadeh A, Rezaei-Sadabady R, Davaran S et al (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8:102. https://doi.org/10.1186/1556-276X-8-102

    Article  CAS  Google Scholar 

  41. New RR (1990) Liposomes: a practical approach. IRL Press at Oxford University Press

    Google Scholar 

  42. Antonenko YN, Pohl P, Denisov GA (1997) Permeation of ammonia across bilayer lipid membranes studied by ammonium ion selective microelectrodes. Biophys J 72:2187–2195. https://doi.org/10.1016/S0006-3495(97)78862-3

    Article  CAS  Google Scholar 

  43. Barenholz Y (Chezy) (2012) Doxil®—The first FDA-approved nano-drug: lessons learned. J Controlled Release 160:117–134. https://doi.org/10.1016/j.jconrel.2012.03.020

  44. Fritze A, Hens F, Kimpfler A et al (2006) Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. Biochim Biophys Acta Biomembr 1758:1633–1640. https://doi.org/10.1016/j.bbamem.2006.05.028

    Article  CAS  Google Scholar 

  45. Abraham SA, Edwards K, Karlsson G et al (2002) Formation of transition metal-doxorubicin complexes inside liposomes. Biochim Biophys Acta Biomembr 1565:41–54. https://doi.org/10.1016/S0005-2736(02)00507-2

    Article  CAS  Google Scholar 

  46. Cheung BCL, Sun THT, Leenhouts JM, Cullis PR (1998) Loading of doxorubicin into liposomes by forming Mn2+-drug complexes. Biochim Biophys Acta Biomembr 1414:205–216. https://doi.org/10.1016/S0005-2736(98)00168-0

    Article  CAS  Google Scholar 

  47. Al-Jamal WT, Kostarelos K (2007) Liposome-nanoparticle hybrids for multimodal diagnostic and therapeutic applications. Nanomedicine (Lond) 2:85–98. https://doi.org/10.2217/17435889.2.1.85

    Article  CAS  Google Scholar 

  48. Monnier CA, Burnand D, Rothen-Rutishauser B et al (2014) Magnetoliposomes: opportunities and challenges. Eur J Nanomed 6:201–215. https://doi.org/10.1515/ejnm-2014-0042

    Article  CAS  Google Scholar 

  49. Fattahi H, Laurent S, Liu F et al (2011) Magnetoliposomes as multimodal contrast agents for molecular imaging and cancer nanotheragnostics. Nanomedicine (Lond) 6:529–544. https://doi.org/10.2217/nnm.11.14

    Article  CAS  Google Scholar 

  50. Soenen SJ, Vande Velde G, Ketkar-Atre A et al (2011) Magnetoliposomes as magnetic resonance imaging contrast agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:197–211. https://doi.org/10.1002/wnan.122

    Article  CAS  Google Scholar 

  51. Marie H, Plassat V, Lesieur S et al (2013) Magnetic-fluid-loaded liposomes for MR imaging and therapy of cancer. J Drug Deliv Sci Technol 23:25–37. https://doi.org/10.1016/S1773-2247(13)50004-9

    Article  CAS  Google Scholar 

  52. Kasili PM, Dinh TV (2005) Liposome encapsulated gold nanoshells for nanophototherapy induced hyperthermia. Int J Nanotechnol 2:397. https://doi.org/10.1504/IJNT.2005.008076

    Article  CAS  Google Scholar 

  53. Rengan AK, Jagtap M, De A et al (2014) Multifunctional gold coated thermo-sensitive liposomes for multimodal imaging and photo-thermal therapy of breast cancer cells. Nanoscale 6:916–923. https://doi.org/10.1039/c3nr04448c

    Article  CAS  Google Scholar 

  54. Rengan AK, Bukhari AB, Pradhan A et al (2015) In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer. Nano Lett 15:842–848. https://doi.org/10.1021/nl5045378

    Article  CAS  Google Scholar 

  55. Liu Y, Zhang X, Liu Z, Wang L (2017) Gold nanoshell-based betulinic acid liposomes for synergistic chemo-photothermal therapy. Nanomed Nanotechnol Biol Med 13:1891–1900. https://doi.org/10.1016/j.nano.2017.03.012

    Article  CAS  Google Scholar 

  56. Paasonen L, Laaksonen T, Johans C et al (2007) Gold nanoparticles enable selective light-induced contents release from liposomes. J Controlled Release 122:86–93. https://doi.org/10.1016/j.jconrel.2007.06.009

    Article  CAS  Google Scholar 

  57. Volodkin DV, Skirtach AG, Möhwald H (2009) Near-IR remote release from assemblies of liposomes and nanoparticles. Angew Chemie Int Ed 48:1807–1809. https://doi.org/10.1002/anie.200805572

    Article  CAS  Google Scholar 

  58. Wu G, Mikhailovsky A, Khant HA et al (2008) Remotely triggered liposomal release by near-infrared light absorption via hollow gold nanoshells. J Am Chem Soc 130:8175–8177. https://doi.org/10.1021/ja802656d

    Article  CAS  Google Scholar 

  59. Pornpattananangkul D, Olson S, Aryal S et al (2011) Stimuli-responsive liposome fusion mediated by gold nanoparticles. ACS Nano 4:1935–1942. https://doi.org/10.1021/nn9018587

    Article  CAS  Google Scholar 

  60. Lozano N, Al-Jamal WT, Taruttis A et al (2012) Liposome-gold nanorod hybrids for high-resolution visualization deep in tissues. J Am Chem Soc 134:13256–13258. https://doi.org/10.1021/ja304499q

    Article  CAS  Google Scholar 

  61. Wang H, Zhao P, Su W et al (2010) PLGA/polymeric liposome for targeted drug and gene co-delivery. Biomaterials 31:8741–8748. https://doi.org/10.1016/j.biomaterials.2010.07.082

    Article  CAS  Google Scholar 

  62. Zhang L, Granick S (2006) How to stabilize phospholipid liposomes (using nanoparticles). Nano Lett 6:694–698. https://doi.org/10.1021/nl052455y

    Article  CAS  Google Scholar 

  63. Qu W, Zuo W, Li N et al (2017) Design of multifunctional liposome-quantum dot hybrid nanocarriers and their biomedical application. J Drug Target 2330:1–12. https://doi.org/10.1080/1061186X.2017.1323334

    Article  Google Scholar 

  64. Al-Jamal WT, Al-Jamal KT, Tian B et al (2008) Lipid-quantum dot bilayer vesicles enhance tumor cell uptake and retention in vitro and in vivo. ACS Nano 2:408–418. https://doi.org/10.1021/nn700176a

    Article  CAS  Google Scholar 

  65. Wang Y, Zeng S, Lin TM et al (2014) Evaluating the anticancer properties of liposomal copper in a nude xenograft mouse model of human prostate cancer: formulation, in vitro, in vivo, histology and tissue distribution studies. Pharm Res 31:3106–3119. https://doi.org/10.1007/s11095-014-1403-6

    Article  CAS  Google Scholar 

  66. Lee J-H, Shin Y, Lee W et al (2016) General and programmable synthesis of hybrid liposome/metal nanoparticles. Sci Adv 2:e1601838. https://doi.org/10.1126/sciadv.1601838

    Article  CAS  Google Scholar 

  67. Anderson M, Omri A (2004) The effect of different lipid components on the in vitro stability and release kinetics of liposome formulations. Drug Deliv 11:33–39. https://doi.org/10.1080/10717540490265243

    Article  CAS  Google Scholar 

  68. Lee Y, Thompson DH (2017) Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. https://doi.org/10.1002/wnan.1450

    Article  Google Scholar 

  69. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003. https://doi.org/10.1038/NMAT3776

    Article  CAS  Google Scholar 

  70. Kirpotin D, Hong K, Mullah N et al (1996) Liposomes with detachable polymer coating: destabilization and fusion of dioleoylphosphatidylethanolamine vesicles triggered by cleavage of surface-grafted poly(ethylene glycol). FEBS Lett 388:115–118. https://doi.org/10.1016/0014-5793(96)00521-2

    Article  CAS  Google Scholar 

  71. Murata K, Egami H, Kiyohara H et al (1993) Expression of group-II phospholipase A2 in malignant and non-malignant human gastric mucosa. Br J Cancer 68:103–111. https://doi.org/10.1038/bjc.1993.294

    Article  CAS  Google Scholar 

  72. Al-Ahmady ZS, Al-Jamal WT, Bossche JV et al (2012) Lipid-peptide vesicle nanoscale hybrids for triggered drug release by mild hyperthermia in vitro and in vivo. ACS Nano 6:9335–9346. https://doi.org/10.1021/nn302148p

    Article  CAS  Google Scholar 

  73. Chen KJ, Liang HF, Chen HL et al (2013) A thermoresponsive bubble-generating liposomal system for triggering localized extracellular drug delivery. ACS Nano 7:438–446. https://doi.org/10.1021/nn304474j

    Article  CAS  Google Scholar 

  74. Poon RT, Borys N (2011) Lyso-thermosensitive liposomal doxorubicin: an adjuvant to increase the cure rate of radiofrequency ablation in liver cancer. Future Oncol 7:937–945. https://doi.org/10.2217/fon.11.73

    Article  CAS  Google Scholar 

  75. Lee JM, Kwag DS, Youn YS, Lee ES (2017) Gas-forming liposomes prepared using a liposomal magnetoporation method. Colloids Surf, B 155:209–214. https://doi.org/10.1016/j.colsurfb.2017.04.017

    Article  CAS  Google Scholar 

  76. Bisby RH, Mead C, Morgan CG (2000) Wavelength-programmed solute release from photosensitive liposomes. Biochem Biophys Res Commun 276:169–173. https://doi.org/10.1006/bbrc.2000.3456

    Article  CAS  Google Scholar 

  77. Schroeder A, Kost J, Barenholz Y (2009) Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes. Chem Phys Lipids 162:1–16. https://doi.org/10.1016/j.chemphyslip.2009.08.003

    Article  CAS  Google Scholar 

  78. Meng L, Deng Z, Niu L et al (2015) A disposable microfluidic device for controlled drug release from thermal-sensitive liposomes by high intensity focused ultrasound. Theranostics 5:1203–1213. https://doi.org/10.7150/thno.12295

    Article  CAS  Google Scholar 

  79. Amstad E, Kohlbrecher J, Müller E et al (2011) Triggered release from liposomes through magnetic actuation of iron oxide nanoparticle containing membranes. Nano Lett 11:1664–1670. https://doi.org/10.1021/nl2001499

    Article  CAS  Google Scholar 

  80. Karanth H, Murthy RSR (2007) pH-sensitive liposomes-principle and application in cancer therapy. J Pharm Pharmacol 59:469–483. https://doi.org/10.1211/jpp.59.4.0001

    Article  CAS  Google Scholar 

  81. Straubinger RM, Düzgünes N, Papahadjopoulos D (1985) pH-sensitive liposomes mediate cytoplasmic delivery of encapsulated macromolecules. FEBS Lett 179:148–154. https://doi.org/10.1016/0014-5793(85)80210-6

    Article  CAS  Google Scholar 

  82. Connor J, Yatvin MB, Huang L (1984) pH-sensitive liposomes: acid-induced liposome fusion. Proc Natl Acad Sci U S A 81:1715–1718

    Article  CAS  Google Scholar 

  83. Deshpande PP, Biswas S, Torchilin VP (2013) Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond) 8:1509–1528. https://doi.org/10.2217/nnm.13.118

    Article  CAS  Google Scholar 

  84. Torchilin V (2009) Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur J Pharm Biopharm 71:431–444. https://doi.org/10.1016/j.ejpb.2008.09.026

    Article  CAS  Google Scholar 

  85. Chatterjee DK, Diagaradjane P, Krishnan S (2011) Nanoparticle-mediated hyperthermia in cancer therapy. Ther Deliv 2:1001–1014. https://doi.org/10.4155/tde.11.72

    Article  CAS  Google Scholar 

  86. Ganta S, Devalapally H, Shahiwala A, Amiji M (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Controlled Release 126:187–204. https://doi.org/10.1016/j.jconrel.2007.12.017

    Article  CAS  Google Scholar 

  87. Needham D, Park J, Wright AM, Tong J (2013) Materials characterization of the low temperature sensitive liposome (LTSL): effects of the lipid composition (lysolipid and DSPE-PEG2000) on the thermal transition and release of doxorubicin. Faraday Discuss 161:515–534. https://doi.org/10.1039/c2fd20111a

    Article  CAS  Google Scholar 

  88. Tagami T, Ernsting MJ, Li SD (2011) Optimization of a novel and improved thermosensitive liposome formulated with DPPC and a Brij surfactant using a robust in vitro system. J Controlled Release 154:290–297. https://doi.org/10.1016/j.jconrel.2011.05.020

    Article  CAS  Google Scholar 

  89. Ickenstein LM, Arfvidsson MC, Needham D et al (2003) Disc formation in cholesterol-free liposomes during phase transition. Biochim Biophys Acta Biomembr 1614:135–138. https://doi.org/10.1016/S0005-2736(03)00196-2

    Article  CAS  Google Scholar 

  90. Zagar TM, Vujaskovic Z, Formenti S et al (2014) Two phase I dose-escalation/pharmacokinetics studies of low temperature liposomal doxorubicin (LTLD) and mild local hyperthermia in heavily pretreated patients with local regionally recurrent breast cancer. Int J Hyperth 30:285–294. https://doi.org/10.3109/02656736.2014.936049

    Article  CAS  Google Scholar 

  91. Yang ZR, Wang HF, Zhao J et al (2007) Recent developments in the use of adenoviruses and immunotoxins in cancer gene therapy. Cancer Gene Ther 14:599–615. https://doi.org/10.1038/sj.cgt.7701054

    Article  CAS  Google Scholar 

  92. Mintzer MA, Simanek EE (2009) Nonviral vectors for gene delivery. Chem Rev 109:259–302. https://doi.org/10.1021/cr800409e

    Article  CAS  Google Scholar 

  93. Liu H, Tu Z, Feng F et al (2015) Virosome, a hybrid vehicle for efficient and safe drug delivery and its emerging application in cancer treatment. Acta Pharm 65:105–116. https://doi.org/10.1515/acph-2015-0019

    Article  CAS  Google Scholar 

  94. Ramamoorth M (2015) Non viral vectors in gene therapy—an overview. J Clin Diagn Res 9:1–6. https://doi.org/10.7860/JCDR/2015/10443.5394

    Article  CAS  Google Scholar 

  95. Shim G, Han SE, Yu YH et al (2011) Trilysinoyl oleylamide-based cationic liposomes for systemic co-delivery of siRNA and an anticancer drug. J Controlled Release 155:60–66. https://doi.org/10.1016/j.jconrel.2010.10.017

    Article  CAS  Google Scholar 

  96. Jose A, Labala S, Venuganti VVK (2016) Co-delivery of curcumin and STAT3 siRNA using deformable cationic liposomes to treat skin cancer. J Drug Target. https://doi.org/10.1080/1061186X.2016.1258567

    Article  Google Scholar 

  97. Song YK, Liu F, Chu S, Liu D (1997) Characterization of cationic liposome-mediated gene transfer in vivo by intravenous administration. Hum Gene Ther 8:1585–1594. https://doi.org/10.1089/hum.1997.8.13-1585

    Article  CAS  Google Scholar 

  98. Ren T, Song YK, Zhang G, Liu D (2000) Structural basis of DOTMA for its high intravenous transfection activity in mouse. Gene Ther 7:764–768. https://doi.org/10.1038/sj.gt.3301153

    Article  CAS  Google Scholar 

  99. Colombani T, Peuziat P, Dallet L et al (2017) Self-assembling complexes between binary mixtures of lipids with different linkers and nucleic acids promote universal mRNA, DNA and siRNA delivery. J Controlled Release 249:131–142. https://doi.org/10.1016/j.jconrel.2017.01.041

    Article  CAS  Google Scholar 

  100. Zuidam NJ, Barenholz Y (1998) Electrostatic and structural properties of complexes involving plasmid DNA and cationic lipids commonly used for gene delivery. Biochim Biophys Acta Biomembr 1368:115–128. https://doi.org/10.1016/S0005-2736(97)00187-9

    Article  CAS  Google Scholar 

  101. Dalby B, Cates S, Harris A et al (2004) Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods 33:95–103. https://doi.org/10.1016/j.ymeth.2003.11.023

    Article  CAS  Google Scholar 

  102. Harvie P, Wong FM, Bally MB (1998) Characterization of lipid DNA interactions. I. Destabilization of bound lipids and DNA dissociation. Biophys J 75:1040–1051. https://doi.org/10.1016/S0006-3495(98)77593-9

    Article  CAS  Google Scholar 

  103. Nakamura T, Noma Y, Sakurai Y, Harashima H (2017) Modifying cationic liposomes with cholesteryl-PEG prevents their aggregation in human urine and enhances cellular uptake by bladder cancer cells. Biol Pharm Bull 40:234–237. https://doi.org/10.1248/bpb.b16-00770

    Article  CAS  Google Scholar 

  104. Hatakeyama H, Akita H, Harashima H (2013) The polyethyleneglycol dilemma: advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biol Pharm Bull 36:892–899. https://doi.org/10.1248/bpb.b13-00059

    Article  CAS  Google Scholar 

  105. Kang SH, Cho HJ, Shim G et al (2011) Cationic liposomal co-delivery of small interfering RNA and a MEK inhibitor for enhanced anticancer efficacy. Pharm Res 28:3069–3078. https://doi.org/10.1007/s11095-011-0569-4

    Article  CAS  Google Scholar 

  106. Wang J, Ayano E, Maitani Y, Kanazawa H (2017) Enhanced cellular uptake and gene silencing activity of siRNA using temperature-responsive polymer-modified liposome. Int J Pharm 523:217–228. https://doi.org/10.1016/j.ijpharm.2017.03.035

    Article  CAS  Google Scholar 

  107. Inoh Y, Furuno T, Hirashima N et al (2011) Rapid delivery of small interfering RNA by biosurfactant MEL-A-containing liposomes. Biochem Biophys Res Commun 414:635–640. https://doi.org/10.1016/j.bbrc.2011.09.147

    Article  CAS  Google Scholar 

  108. Wu Y, Crawford M, Yu B et al (2011) MicroRNA delivery by cationic lipoplexes for lung cancer therapy. Mol Pharm 8:1381–1389. https://doi.org/10.1021/mp2002076

    Article  CAS  Google Scholar 

  109. Inoh Y, Nagai M, Matsushita K et al (2017) Gene transfection efficiency into dendritic cells is influenced by the size of cationic liposomes/DNA complexes. Eur J Pharm Sci 102:230–236. https://doi.org/10.1016/j.ejps.2017.03.023

    Article  CAS  Google Scholar 

  110. Liu F, Conwell CC, Yuan X et al (2007) Novel nonviral vectors target cellular signaling pathways: regulated gene expression and reduced toxicity. J Pharmacol Exp Ther 321:777. https://doi.org/10.1124/jpet.106.118117.lipid

    Article  CAS  Google Scholar 

  111. Jinturkar KA, Anish C, Kumar MK et al (2012) Liposomal formulations of Etoposide and Docetaxel for p53 mediated enhanced cytotoxicity in lung cancer cell lines. Biomaterials 33:2492–2507. https://doi.org/10.1016/j.biomaterials.2011.11.067

    Article  CAS  Google Scholar 

  112. Mislick KA, Baldeschwieler JD (1996) Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc Natl Acad Sci U S A 93:12349–12354. https://doi.org/10.1073/pnas.93.22.12349

    Article  CAS  Google Scholar 

  113. Chesnoy S, Huang L (2000) Structure and function of lipid-DNA complexes for gene delivery. Annu Rev Biophys Biomol Struct 29:27–47. https://doi.org/10.1146/annurev.biophys.29.1.27

    Article  CAS  Google Scholar 

  114. Zanta MA, Belguise-Valladier P, Behr JP (1999) Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci U S A 96:91–96. https://doi.org/10.1073/pnas.96.1.91

    Article  CAS  Google Scholar 

  115. Aronsohn AI, Hughes JA (1998) Nuclear localization signal peptides enhance cationic liposome-mediated gene therapy. J Drug Target 5:163–169. https://doi.org/10.3109/10611869808995871

    Article  CAS  Google Scholar 

  116. Nakanishi T, Kunisawa J, Hayashi A et al (1999) Positively charged liposome functions as an efficient immunoadjuvant in inducing cell-mediated immune response to soluble proteins. J Controlled Release 61:233–240. https://doi.org/10.1016/S0168-3659(99)00097-8

    Article  CAS  Google Scholar 

  117. Iyer AK, Khaled G, Fang J, Maeda H (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11:812–818. https://doi.org/10.1016/j.drudis.2006.07.005

    Article  CAS  Google Scholar 

  118. Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Controlled Release 148:135–146. https://doi.org/10.1016/j.jconrel.2010.08.027

    Article  CAS  Google Scholar 

  119. Gabizon A, Chisin R, Amselem S et al (1991) Pharmacokinetic and imaging studies in patients receiving a formulation of liposome-associated adriamycin. Br J Cancer 64:1125–1132. https://doi.org/10.1038/bjc.1991.476

    Article  CAS  Google Scholar 

  120. Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomed 1:297–315. https://doi.org/10.1023/A:1020134521778

    Article  CAS  Google Scholar 

  121. Ishida T, Harashima H, Kiwada H (2001) Interactions of liposomes with cells in vitro and in vivo: opsonins and receptors. Curr Drug Metab 2:397–409. https://doi.org/10.2174/1389200013338306

    Article  CAS  Google Scholar 

  122. Tirosh O, Kohen R, Katzhendler J et al (1997) Novel synthetic phospholipid protects lipid bilayers against oxidation damage: role of hydration layer and bound water. J Chem Soc Perkin Trans 2:383–390. https://doi.org/10.1039/A601955B

    Article  Google Scholar 

  123. Torchilin VP (2010) Passive and active drug targeting: drug delivery to tumors as an example. Handb Exp Pharmacol 197:3–53. https://doi.org/10.1007/978-3-642-00477-3_1

    Article  CAS  Google Scholar 

  124. Yingchoncharoen P, Kalinowski DS, Richardson DR (2016) Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol Rev 68:701–787. https://doi.org/10.1124/pr.115.012070

    Article  CAS  Google Scholar 

  125. Noble GT, Stefanick JF, Ashley JD et al (2014) Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol 32:32–45. https://doi.org/10.1016/j.tibtech.2013.09.007

    Article  CAS  Google Scholar 

  126. Sawant RR, Torchilin VP (2012) Challenges in development of targeted liposomal therapeutics. AAPS J 14:303–315. https://doi.org/10.1208/s12248-012-9330-0

    Article  CAS  Google Scholar 

  127. Krieger ML, Eckstein N, Schneider V et al (2010) Overcoming cisplatin resistance of ovarian cancer cells by targeted liposomes in vitro. Int J Pharm 389:10–17. https://doi.org/10.1016/j.ijpharm.2009.12.061

    Article  CAS  Google Scholar 

  128. Ying X, Wen H, Lu WL et al (2010) Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Controlled Release 141:183–192. https://doi.org/10.1016/j.jconrel.2009.09.020

    Article  CAS  Google Scholar 

  129. Suzuki R, Takizawa T, Kuwata Y et al (2008) Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome. Int J Pharm 346:143–150. https://doi.org/10.1016/j.ijpharm.2007.06.010

    Article  CAS  Google Scholar 

  130. Li X, Ding L, Xu Y et al (2009) Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int J Pharm 373:116–123. https://doi.org/10.1016/j.ijpharm.2009.01.023

    Article  CAS  Google Scholar 

  131. Paliwal SR, Paliwal R, Mishra N et al (2010) A novel cancer targeting approach based on estrone anchored stealth liposome for site-specific breast cancer therapy. Curr Cancer Drug Targets 10:343–353. https://doi.org/10.2174/156800910791190210

    Article  CAS  Google Scholar 

  132. Gabizon A, Horowitz AT, Goren D et al (2003) In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin Cancer Res 9:6551–6559

    CAS  Google Scholar 

  133. Yamada A, Taniguchi Y, Kawano K et al (2008) Design of folate-linked liposomal doxorubicin to its antitumor effect in mice. Clin Cancer Res 14:8161–8168. https://doi.org/10.1158/1078-0432.CCR-08-0159

    Article  CAS  Google Scholar 

  134. Beuttler J, Rothdiener M, Müller D et al (2009) Targeting of epidermal growth factor receptor (EGFR)-expressing tumor cells with sterically stabilized affibody liposomes (SAL). Bioconjug Chem 20:1201–1208. https://doi.org/10.1021/bc900061v

    Article  CAS  Google Scholar 

  135. Mamot C, Drummond DC, Noble CO et al (2005) Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res 65:11631–11638. https://doi.org/10.1158/0008-5472.CAN-05-1093

    Article  CAS  Google Scholar 

  136. Kirpotin DB, Drummond DC, Shao Y et al (2006) Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 66:6732–6740. https://doi.org/10.1158/0008-5472.CAN-05-4199

    Article  CAS  Google Scholar 

  137. Park JW, Hong K, Kirpotin DB et al (2002) Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res 8:1172–1181

    CAS  Google Scholar 

  138. Puri A, Kramer-Marek G, Campbell-Massa R et al (2008) HER2-specific affibody-conjugated thermosensitive liposomes (Affisomes) for improved delivery of anticancer agents. J Liposome Res 18:293–307. https://doi.org/10.1080/08982100802457377

    Article  CAS  Google Scholar 

  139. Alexis F, Basto P, Levy-Nissenbaum E et al (2008) HER-2-targeted nanoparticle-affibody bioconjugates for cancer therapy. ChemMedChem 3:1839–1843. https://doi.org/10.1002/cmdc.200800122

    Article  CAS  Google Scholar 

  140. Kirpotin D, Park JW, Hong K et al (1997) Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro. Biochemistry 36:66–75. https://doi.org/10.1021/bi962148u

    Article  CAS  Google Scholar 

  141. Yang T, Choi MK, De Cui F et al (2007) Antitumor effect of paclitaxel-loaded PEGylated immunoliposomes against human breast cancer cells. Pharm Res 24:2402–2411. https://doi.org/10.1007/s11095-007-9425-y

    Article  CAS  Google Scholar 

  142. Allen TM, Mumbengegwi DR, Charrois GJR (2005) Anti-CD19-targeted liposomal doxorubicin improves the therapeutic efficacy in murine B-cell lymphoma and ameliorates the toxicity of liposomes with varying drug release rates. Clin Cancer Res 11:3567–3573. https://doi.org/10.1158/1078-0432.CCR-04-2517

    Article  CAS  Google Scholar 

  143. Cheng WWK, Das D, Suresh M, Allen TM (2007) Expression and purification of two anti-CD19 single chain Fv fragments for targeting of liposomes to CD19-expressing cells. Biochim Biophys Acta Biomembr 1768:21–29. https://doi.org/10.1016/j.bbamem.2006.09.004

    Article  CAS  Google Scholar 

  144. Cheng WWK, Allen TM (2008) Targeted delivery of anti-CD19 liposomal doxorubicin in B-cell lymphoma: a comparison of whole monoclonal antibody, Fab′ fragments and single chain Fv. J Controlled Release 126:50–58. https://doi.org/10.1016/j.jconrel.2007.11.005

    Article  CAS  Google Scholar 

  145. Sapra P, Moase EH, Ma J, Allen TM (2004) Improved therapeutic responses in a xenograft model of human B lymphoma (Namalwa) for liposomal vincristine versus liposomal doxorubicin targeted via anti-CD19 IgG2a or Fab′ fragments. Clin Cancer Res 10:1100–1111. https://doi.org/10.1158/1078-0432.CCR-03-0041

    Article  CAS  Google Scholar 

  146. Eliaz RE, Nir S, Marty C, Szoka FC (2004) Determination and modeling of kinetics of cancer cell killing by doxorubicin and doxorubicin encapsulated in targeted liposomes. Cancer Res 64:711–718. https://doi.org/10.1158/0008-5472.CAN-03-0654

    Article  CAS  Google Scholar 

  147. Lundberg BB (2007) Cellular association and cytotoxicity of doxorubicin-loaded immunoliposomes targeted via Fab′ fragments of an anti-CD74 antibody. Digestion 7544:171–175. https://doi.org/10.1080/10717540601036831

    Article  CAS  Google Scholar 

  148. Pastorino F, Brignole C, Marimpietri D et al (2003) Doxorubicin-loaded Fab′ fragments of anti-disialoganglioside immunoliposomes selectively inhibit the growth and dissemination of human neuroblastoma in nude mice. Cancer Res 63:86–92

    CAS  Google Scholar 

  149. Vingerhoeds MH, Steerenberg PA, Hendriks JJ et al (1996) Immunoliposome-mediated targeting of doxorubicin to human ovarian carcinoma in vitro and in vivo. Br J Cancer 74:1023–1029. https://doi.org/10.1038/bjc.1996.484

    Article  CAS  Google Scholar 

  150. Matsumura Y, Gotoh M, Muro K et al (2004) Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann Oncol 15:517–525. https://doi.org/10.1093/annonc/mdh092

    Article  CAS  Google Scholar 

  151. Hosokawa S, Tagawa T, Niki H et al (2003) Efficacy of immunoliposomes on cancer models in a cell-surface-antigen-density-dependent manner. Br J Cancer 89:1545–1551. https://doi.org/10.1038/sj.bjc.6601341

    Article  CAS  Google Scholar 

  152. Elbayoumi TA, Torchilin VP (2009) Tumor-targeted nanomedicines: enhanced antitumor efficacy in vivo of doxorubicin-loaded, long-circulating liposomes modified with cancer-specific monoclonal antibody. Clin Cancer Res 15:1973–1980. https://doi.org/10.1158/1078-0432.CCR-08-2392

    Article  CAS  Google Scholar 

  153. Elbayoumi TA, Torchilin VP (2008) Tumor-specific antibody-mediated targeted delivery of Doxil® reduces the manifestation of auricular erythema side effect in mice. Int J Pharm 357:272–279. https://doi.org/10.1016/j.ijpharm.2008.01.041

    Article  CAS  Google Scholar 

  154. Zhu L, Kate P, Torchilin VP (2012) Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano 6:3491–3498. https://doi.org/10.1021/nn300524f

    Article  CAS  Google Scholar 

  155. Moreira JN, Gaspar R, Allen TM (2001) Targeting Stealth liposomes in a murine model of human small cell lung cancer. Biochim Biophys Acta 1515:167–176. https://doi.org/10.1016/s0005-2736(01)00411-4

    Article  CAS  Google Scholar 

  156. Moreira JNN, Hansen CB, Gaspar R, Allen TM (2001) A growth factor antagonist as a targeting agent for sterically stabilized liposomes in human small cell lung cancer. Biochim Biophys Acta 1514:303–317. https://doi.org/10.1016/S0005-2736(01)00386-8

    Article  CAS  Google Scholar 

  157. Dagar S, Sekosan M, Lee BS et al (2001) VIP receptors as molecular targets of breast cancer: implications for targeted imaging and drug delivery. J Controlled Release 74:129–134. https://doi.org/10.1016/S0168-3659(01)00326-1

    Article  CAS  Google Scholar 

  158. Kang H, O’Donoghue MB, Liu H, Tan W (2010) A liposome-based nanostructure for aptamer directed delivery. Chem Commun (Camb) 46:249–251. https://doi.org/10.1039/b916911c

    Article  CAS  Google Scholar 

  159. Xing H, Tang L, Yang X et al (2013) Selective delivery of an anticancer drug with aptamer-functionalized liposomes to breast cancer cells in vitro and in vivo. J Mater Chem B Mater Biol Med 1:5288–5297. https://doi.org/10.1039/C3TB20412J

    Article  CAS  Google Scholar 

  160. Shi C, Cao H, He W et al (2015) Novel drug delivery liposomes targeted with a fully human anti-VEGF165 monoclonal antibody show superior antitumor efficacy in vivo. Biomed Pharmacother 73:48–57. https://doi.org/10.1016/j.biopha.2015.05.008

    Article  CAS  Google Scholar 

  161. Zhao H, Wang J-C, Sun Q-S et al (2009) RGD-based strategies for improving antitumor activity of paclitaxel-loaded liposomes in nude mice xenografted with human ovarian cancer. J Drug Target 17:10–18. https://doi.org/10.1080/10611860802368966

    Article  CAS  Google Scholar 

  162. Xiong XB, Huang Y, Lu WL et al (2005) Intracellular delivery of doxorubicin with RGD-modified sterically stabilized liposomes for an improved antitumor efficacy: in vitro and in vivo. J Pharm Sci 94:1782–1793. https://doi.org/10.1002/jps.20397

    Article  CAS  Google Scholar 

  163. Voinea M, Manduteanu I, Dragomir E et al (2005) Immunoliposomes directed toward VCAM-1 interact specifically with activated endothelial cells - A potential tool for specific drug delivery. Pharm Res 22:1906–1917. https://doi.org/10.1007/s11095-005-7247-3

    Article  CAS  Google Scholar 

  164. Gosk S, Moos T, Gottstein C, Bendas G (2008) VCAM-1 directed immunoliposomes selectively target tumor vasculature in vivo. Biochim Biophys Acta Biomembr 1778:854–863. https://doi.org/10.1016/j.bbamem.2007.12.021

    Article  CAS  Google Scholar 

  165. Jaafari MR, Foldvari M (1999) P0 protein mediated targeting of liposomes to melanoma cells with high level of ICAM-1 expression. J Drug Target 7:101–112. https://doi.org/10.3109/10611869909085495

    Article  CAS  Google Scholar 

  166. Jaafari MR, Foldvari M (2002) Targeting of liposomes to melanoma cells with high levels of ICAM-1 expression through adhesive peptides from immunoglobulin domains. J Pharm Sci 91:396–404. https://doi.org/10.1002/jps.10062

    Article  CAS  Google Scholar 

  167. Pastorino F, Brignole C, Marimpietri D et al (2003) Vascular damage and anti-angiogenic effects of tumor vessel-targeted liposomal chemotherapy. Cancer Res 63:7400–7409

    CAS  Google Scholar 

  168. Kondo M, Asai T, Katanasaka Y et al (2004) Anti-neovascular therapy by liposomal drug targeted to membrane type-1 matrix metalloproteinase. Int J Cancer 108:301–306. https://doi.org/10.1002/ijc.11526

    Article  CAS  Google Scholar 

  169. Atobe K, Ishida T, Ishida E et al (2007) In vitro efficacy of a sterically stabilized immunoliposomes targeted to membrane type 1 matrix metalloproteinase (MT1-MMP). Biol Pharm Bull 30:972–978. https://doi.org/10.1248/bpb.30.972

    Article  CAS  Google Scholar 

  170. Hatakeyama H, Akita H, Ishida E et al (2007) Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes. Int J Pharm 342:194–200. https://doi.org/10.1016/j.ijpharm.2007.04.037

    Article  CAS  Google Scholar 

  171. Dearling JLJ, Packard AB (2017) Molecular imaging in nanomedicine—a developmental tool and a clinical necessity. J Controlled Release 261:23–30. https://doi.org/10.1016/j.jconrel.2017.06.011

    Article  CAS  Google Scholar 

  172. Lee H, Zheng J, Gaddy D et al (2015) A gradient-loadable 64Cu-chelator for quantifying tumor deposition kinetics of nanoliposomal therapeutics by positron emission tomography. Nanomed Nanotechnol Biol Med 11:155–165. https://doi.org/10.1016/j.nano.2014.08.011

    Article  CAS  Google Scholar 

  173. Lee SG, Gangangari K, Kalidindi TM et al (2016) Copper-64 labeled liposomes for imaging bone marrow. Nucl Med Biol 43:781–787. https://doi.org/10.1016/j.nucmedbio.2016.08.011

    Article  CAS  Google Scholar 

  174. Petersen AL, Henriksen JR, Binderup T et al (2016) In vivo evaluation of PEGylated 64Cu-liposomes with theranostic and radiotherapeutic potential using micro PET/CT. Eur J Nucl Med Mol Imaging 43:941–952. https://doi.org/10.1007/s00259-015-3272-6

    Article  CAS  Google Scholar 

  175. Asai T (2012) Positron emission tomography (PET) imaging of small interfering RNA (siRNA) delivery in drug development. Yakugaku Zasshi 132:1159–1163. https://doi.org/10.1002/clc.22060

    Article  CAS  Google Scholar 

  176. Lamichhane N, Dewkar GK, Sundaresan G et al (2017) [18F]-fluorinated carboplatin and [111in]-liposome for image-guided drug delivery. Int J Mol Sci. https://doi.org/10.3390/ijms18051079

    Article  Google Scholar 

  177. Li S, Goins B, Zhang L, Bao A (2012) Novel multifunctional theranostic liposome drug delivery system: construction, characterization, and multimodality MR, near-infrared fluorescent, and nuclear imaging. Bioconjug Chem 23:1322–1332. https://doi.org/10.1021/bc300175d

    Article  CAS  Google Scholar 

  178. Han XJ, Wei YF, Wan YY et al (2014) Development of a novel liposomal nanodelivery system for bioluminescence imaging and targeted drug delivery in ErbB2-overexpressing metastatic ovarian carcinoma. Int J Mol Med 34:1225–1232. https://doi.org/10.3892/ijmm.2014.1922

    Article  CAS  Google Scholar 

  179. De Smet M, Langereis S, Van Den Bosch S et al (2013) SPECT/CT imaging of temperature-sensitive liposomes for MR-image guided drug delivery with high intensity focused ultrasound. J Controlled Release 169:82–90. https://doi.org/10.1016/j.jconrel.2013.04.005

    Article  CAS  Google Scholar 

  180. Grange C, Geninatti-Crich S, Esposito G et al (2010) Combined delivery and magnetic resonance imaging of neural cell adhesion molecule-targeted doxorubicin-containing liposomes in experimentally induced Kaposi’s sarcoma. Cancer Res 70:2180–2190. https://doi.org/10.1158/0008-5472.CAN-09-2821

    Article  CAS  Google Scholar 

  181. Yeo SY, de Smet M, Langereis S et al (2014) Temperature-sensitive paramagnetic liposomes for image-guided drug delivery: Mn2+ versus [Gd(HPDO3A)(H2O)]. Biochim Biophys Acta Biomembr 1838:2807–2816. https://doi.org/10.1016/j.bbamem.2014.07.019

    Article  CAS  Google Scholar 

  182. He Y, Zhang L, Song C, Zhu D (2014) Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy. Int J Nanomed 4055. https://doi.org/10.2147/ijn.s61880

  183. Garnier B, Tan S, Miraux S et al (2012) Optimized synthesis of 100 nm diameter magnetoliposomes with high content of maghemite particles and high MRI effect. Contrast Media Mol Imaging 7:231–239. https://doi.org/10.1002/cmmi.487

    Article  CAS  Google Scholar 

  184. Martínez-González R, Estelrich J, Busquets M (2016) Liposomes loaded with hydrophobic iron oxide nanoparticles: suitable T2 contrast agents for MRI. Int J Mol Sci 17:1209. https://doi.org/10.3390/ijms17081209

    Article  CAS  Google Scholar 

  185. Shirmardi Shaghasemi B, Virk MM, Reimhult E (2017) Optimization of magneto-thermally controlled release kinetics by tuning of magnetoliposome composition and structure. Sci Rep 7:7474. https://doi.org/10.1038/s41598-017-06980-9

    Article  CAS  Google Scholar 

  186. Skouras A, Mourtas S, Markoutsa E et al (2011) Magnetoliposomes with high USPIO entrapping efficiency, stability and magnetic properties. Nanomed Nanotechnol Biol Med 7:572–579. https://doi.org/10.1016/j.nano.2011.06.010

    Article  CAS  Google Scholar 

  187. Soenen SJH, Himmelreich U, Nuytten N et al (2010) Intracellular nanoparticle coating stability determines nanoparticle diagnostics efficacy and cell functionality. Small 6:2136–2145. https://doi.org/10.1002/smll.201000763

    Article  CAS  Google Scholar 

  188. Chithrani BD, Dunne M, Stewart J et al (2010) Delivery of smaller gold nanoparticles by liposomal incorporation. In: Proceedings of the 2010 International Conference on Nanoscience and Nanotechnology, ICONN 2010, pp 241–243. https://doi.org/10.1109/iconn.2010.6045194

  189. Lozano N, Al-Ahmady ZS, Beziere NS et al (2015) Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent. Int J Pharm 482:2–10. https://doi.org/10.1016/j.ijpharm.2014.10.045

    Article  CAS  Google Scholar 

  190. Wen CJ, Sung CT, Aljuffali IA et al (2013) Nanocomposite liposomes containing quantum dots and anticancer drugs for bioimaging and therapeutic delivery: a comparison of cationic, PEGylated and deformable liposomes. Nanotechnology 24:325101. https://doi.org/10.1088/0957-4484/24/32/325101

    Article  CAS  Google Scholar 

  191. Sonali Singh RP, Sharma G et al (2016) RGD-TPGS decorated theranostic liposomes for brain targeted delivery. Colloids Surf, B 147:129–141. https://doi.org/10.1016/j.colsurfb.2016.07.058

    Article  CAS  Google Scholar 

  192. Maples D, McLean K, Sahoo K et al (2015) Synthesis and characterisation of ultrasound imageable heat-sensitive liposomes for HIFU therapy. Int J Hyperth 31:674–685. https://doi.org/10.3109/02656736.2015.1057622

    Article  CAS  Google Scholar 

  193. Lovell JF, Jin CS, Huynh E et al (2011) Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater 10:324–332. https://doi.org/10.1038/nmat2986

    Article  CAS  Google Scholar 

  194. Miranda D, Carter K, Luo D et al (2017) Multifunctional liposomes for image-guided intratumoral chemo-phototherapy. Adv Healthc Mater 1700253:1–9. https://doi.org/10.1002/adhm.201700253

    Article  CAS  Google Scholar 

  195. Huynh E, Zheng G (2014) Porphysome nanotechnology: a paradigm shift in lipid-based supramolecular structures. Nano Today 9:212–222. https://doi.org/10.1016/j.nantod.2014.04.012

    Article  CAS  Google Scholar 

  196. Sou K, Goins B, Takeoka S et al (2007) Selective uptake of surface-modified phospholipid vesicles by bone marrow macrophages in vivo. Biomaterials 28:2655–2666. https://doi.org/10.1016/j.biomaterials.2007.01.041

    Article  CAS  Google Scholar 

  197. Vieira DB, Gamarra LF (2016) Getting into the brain: liposome-based strategies for effective drug delivery across the blood–brain barrier. Int J Nanomed 11:5381–5414. https://doi.org/10.2147/IJN.S117210

    Article  CAS  Google Scholar 

  198. Mehta A, Ghaghada K, Mukundan S (2016) Molecular imaging of brain tumors using liposomal contrast agents and nanoparticles. Magn Reson Imaging Clin N Am 24:751–763. https://doi.org/10.1016/j.mric.2016.06.004

    Article  Google Scholar 

  199. Hansen AE, Petersen AL, Henriksen JR et al (2015) Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes. ACS Nano 9:6985–6995. https://doi.org/10.1021/acsnano.5b01324

    Article  CAS  Google Scholar 

  200. Wen CJ, Zhang LW, Al-Suwayeh SA et al (2012) Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging. Int J Nanomed 7:1599–1611. https://doi.org/10.2147/IJN.S29369

    Article  CAS  Google Scholar 

  201. Oku N, Yamashita M, Katayama Y et al (2011) PET imaging of brain cancer with positron emitter-labeled liposomes. Int J Pharm 403:170–177. https://doi.org/10.1016/j.ijpharm.2010.10.001

    Article  CAS  Google Scholar 

  202. Strijkers GJ, Mulder WJM, Van Heeswijk RB et al (2005) Relaxivity of liposomal paramagnetic MRI contrast agents. Magn Reson Mater Phys Biol Med 18:186–192. https://doi.org/10.1007/s10334-005-0111-y

    Article  CAS  Google Scholar 

  203. Tansi FL, Rüger R, Rabenhold M et al (2015) Fluorescence-quenching of a liposomal-encapsulated near-infrared fluorophore as a tool for in vivo optical imaging. JoVE (Journal Vis Exp) e52136. https://doi.org/10.3791/52136

  204. Wu B, Wan B, Lu S-T et al (2017) Near-infrared light-triggered theranostics for tumor-specific enhanced multimodal imaging and photothermal therapy. Int J Nanomed 12:4467–4478. https://doi.org/10.2147/IJN.S137835

    Article  Google Scholar 

  205. Shemesh CS, Moshkelani D, Zhang H (2015) Thermosensitive liposome formulated indocyanine green for near-infrared triggered photodynamic therapy: in vivo evaluation for triple-negative breast cancer. Pharm Res 32:1604–1614. https://doi.org/10.1007/s11095-014-1560-7

    Article  CAS  Google Scholar 

  206. Lammers T, Kiessling F, Hennink WE, Storm G (2010) Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm 7:1899–1912. https://doi.org/10.1021/mp100228v

    Article  CAS  Google Scholar 

  207. Staruch RM, Hynynen K, Chopra R (2015) Hyperthermia-mediated doxorubicin release from thermosensitive liposomes using MR-HIFU: therapeutic effect in rabbit Vx2 tumours. Int J Hyperth 31:118–133. https://doi.org/10.3109/02656736.2014.992483

    Article  CAS  Google Scholar 

  208. Ranjan A, Jacobs GC, Woods DL et al (2012) Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit Vx2 tumor model. J Controlled Release 158:487–494. https://doi.org/10.1016/j.jconrel.2011.12.011

    Article  CAS  Google Scholar 

  209. Kneepkens E, Fernandes A, Nicolay K, Grüll H (2016) Iron(III)-based magnetic resonance-imageable liposomal T1 contrast agent for monitoring temperature-induced image-guided drug delivery. Invest Radiol 51:735–745. https://doi.org/10.1097/RLI.0000000000000297

    Article  CAS  Google Scholar 

  210. De Smet M, Heijman E, Langereis S et al (2011) Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study. J Controlled Release 150:102–110. https://doi.org/10.1016/j.jconrel.2010.10.036

    Article  CAS  Google Scholar 

  211. Viglianti BL, Ponce AM, Michelich CR et al (2006) Chemodosimetry of in vivo tumor liposomal drug concentration using MRI. Magn Reson Med 56:1011–1018. https://doi.org/10.1002/mrm.21032

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wafa T. Al-Jamal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheung, C., Al-Jamal, W.T. (2018). Liposomes-Based Nanoparticles for Cancer Therapy and Bioimaging. In: Gonçalves, G., Tobias, G. (eds) Nanooncology. Nanomedicine and Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-89878-0_2

Download citation

Publish with us

Policies and ethics