Skip to main content

Lower Extremity Arterial Reconstruction in Patients with Diabetes Mellitus: Principles of Treatment

  • Chapter
  • First Online:
The Diabetic Foot

Part of the book series: Contemporary Diabetes ((CDI))

  • 2626 Accesses

Abstract

In patients with peripheral arterial disease (PAD), optimizing the chances for successful revascularization requires careful consideration of several preoperative factors. PAD should be appropriately staged and any concurrent foot infection should be managed to obtain source control. Evaluation of fitness for revascularization can be assessed in a number of ways, focusing on frailty, cardiac disease, and renal insufficiency. Preoperative imaging may include CTA or MRA; however, diagnostic angiography is the most detailed, and is therefore essential in determining whether a patient is appropriate for any revascularization attempt. Angiography also guides the choice between open or endovascular approaches. The presence of an adequate autologous bypass conduit, determined by preoperative vein mapping, is also important in deciding which revascularization technique to pursue initially.

In the diabetic population, the infrapopliteal arteries are the most common site of occlusive disease. Endovascular techniques rely on crossing these areas and reopening them with balloon angioplasty. A successful procedure results in uninterrupted blood flow to the arteries of the foot. Balloon angioplasty alone is the standard modality of treatment in the infrapopliteal arteries. Bare metal stents, drug-coated balloons, and drug-eluting stents have been studied in this area, but despite promising results, they are not widely available.

Surgical bypass is most commonly performed for extensive, multilevel occlusive disease. Successful bypass requires a healthy inflow artery, a patent distal target artery with in-line flow to the foot, and a high-quality autogenous conduit (typically great saphenous vein). Arm vein bypass can also be performed with good outcomes. Prosthetic conduits are not typically used in bypass of infrapopliteal arteries as results are poor. The breadth of endovascular and surgical options for limb salvage in the diabetic patient has expanded to the point where treatment plans are highly individualized and combinations of techniques are common.

Adapted from the prior edition by Bernadette Aulivola and Frank B. Pomposelli Jr.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Diabetes A. Peripheral arterial disease in people with diabetes. Diabetes Care. 2003;26(12):3333–41.

    Google Scholar 

  2. Goldenberg S, Alex M, Joshi RA, Blumenthal HT. Nonatheromatous peripheral vascular disease of the lower extremity in diabetes mellitus. Diabetes. 1959;8(4):261–73.

    CAS  PubMed  Google Scholar 

  3. Barner HB, Kaiser GC, Willman VL. Blood flow in the diabetic leg. Circulation. 1971;43(3):391–4.

    CAS  PubMed  Google Scholar 

  4. Conrad MC. Large and small artery occlusion in diabetics and nondiabetics with severe vascular disease. Circulation. 1967;36(1):83–91.

    CAS  PubMed  Google Scholar 

  5. Irwin ST, Gilmore J, McGrann S, Hood J, Allen JA. Blood flow in diabetics with foot lesions due to ‘small vessel disease’. Br J Surg. 1988;75(12):1201–6.

    CAS  PubMed  Google Scholar 

  6. LoGerfo FW, Coffman JD. Current concepts. Vascular and microvascular disease of the foot in diabetes. Implications for foot care. N Engl J Med. 1984;311(25):1615–9.

    CAS  PubMed  Google Scholar 

  7. Strandness DE Jr, Priest RE, Gibbons GE. Combined clinical and pathologic study of diabetic and nondiabetic peripheral arterial disease. Diabetes. 1964;13:366–72.

    PubMed  Google Scholar 

  8. Rutherford RB, Baker JD, Ernst C, Johnston KW, Porter JM, Ahn S, et al. Recommended standards for reports dealing with lower extremity ischemia: revised version. J Vasc Surg. 1997;26(3):517–38.

    CAS  PubMed  Google Scholar 

  9. Mills JL Sr, Conte MS, Armstrong DG, Pomposelli FB, Schanzer A, Sidawy AN, et al. The Society for Vascular Surgery Lower Extremity Threatened Limb Classification System: risk stratification based on wound, ischemia, and foot infection (WIfI). J Vasc Surg. 2014;59(1):220–34 e1–2.

    PubMed  Google Scholar 

  10. Zhan LX, Branco BC, Armstrong DG, Mills JL Sr. The Society for Vascular Surgery lower extremity threatened limb classification system based on Wound, Ischemia, and foot Infection (WIfI) correlates with risk of major amputation and time to wound healing. J Vasc Surg. 2015;61(4):939–44.

    PubMed  Google Scholar 

  11. Darling JD, McCallum JC, Soden PA, Meng Y, Wyers MC, Hamdan AD, et al. Predictive ability of the Society for Vascular Surgery Wound, Ischemia, and foot Infection (WIfI) classification system following infrapopliteal endovascular interventions for critical limb ischemia. J Vasc Surg. 2016;64(3):616–22.

    PubMed  PubMed Central  Google Scholar 

  12. Lipsky BA, Berendt AR, Cornia PB, Pile JC, Peters EJ, Armstrong DG, et al. 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis. 2012;54(12):e132–73.

    PubMed  Google Scholar 

  13. Gibbons GW. The diabetic foot: amputations and drainage of infection. J Vasc Surg. 1987;5(5):791–3.

    CAS  PubMed  Google Scholar 

  14. Conte MS, Geraghty PJ, Bradbury AW, Hevelone ND, Lipsitz SR, Moneta GL, et al. Suggested objective performance goals and clinical trial design for evaluating catheter-based treatment of critical limb ischemia. J Vasc Surg. 2009;50(6):1462–73 e1–3.

    PubMed  Google Scholar 

  15. Karam J, Tsiouris A, Shepard A, Velanovich V, Rubinfeld I. Simplified frailty index to predict adverse outcomes and mortality in vascular surgery patients. Ann Vasc Surg. 2013;27(7):904–8.

    PubMed  Google Scholar 

  16. Kraiss LW, Beckstrom JL, Brooke BS. Frailty assessment in vascular surgery and its utility in preoperative decision making. Semin Vasc Surg. 2015;28(2):141–7.

    PubMed  Google Scholar 

  17. McFalls EO, Ward HB, Moritz TE, Goldman S, Krupski WC, Littooy F, et al. Coronary-artery revascularization before elective major vascular surgery. N Engl J Med. 2004;351(27):2795–804.

    CAS  Google Scholar 

  18. Santilli SM. The Coronary Artery Revascularization Prophylaxis (CARP) trial: results and remaining controversies. Perspect Vasc Surg Endovasc Ther. 2006;18(4):282–5.

    PubMed  Google Scholar 

  19. Fleisher LA, Fleischmann KE, Auerbach AD, Barnason SA, Beckman JA, Bozkurt B, et al. ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol. 2014;64(22):e77–137.

    PubMed  Google Scholar 

  20. Carpenter JP, Baum RA, Holland GA, Barker CF. Peripheral vascular surgery with magnetic resonance angiography as the sole preoperative imaging modality. J Vasc Surg. 1994;20(6):861–9. discussion 9–71

    CAS  PubMed  Google Scholar 

  21. Lumsden AB, Besman A, Jaffe M, MacDonald MJ, Allen RC. Infrainguinal revascularization in end-stage renal disease. Ann Vasc Surg. 1994;8(1):107–12.

    CAS  PubMed  Google Scholar 

  22. Carsten CG 3rd, Taylor SM, Langan EM 3rd, Crane MM. Factors associated with limb loss despite a patent infrainguinal bypass graft. Am Surg. 1998;64(1):33–7. discussion 7–8

    PubMed  Google Scholar 

  23. Johnson BL, Glickman MH, Bandyk DF, Esses GE. Failure of foot salvage in patients with end-stage renal disease after surgical revascularization. J Vasc Surg. 1995;22(3):280–5. discussion 5–6

    CAS  PubMed  Google Scholar 

  24. Korn P, Hoenig SJ, Skillman JJ, Kent KC. Is lower extremity revascularization worthwhile in patients with end-stage renal disease? Surgery. 2000;128(3):472–9.

    CAS  PubMed  Google Scholar 

  25. Georgopoulos S, Filis K, Vourliotakis G, Bakoyannis C, Papapetrou A, Klonaris C, et al. Lower extremity bypass procedures in diabetic patients with end-stage renal disease: is it worthwhile? Nephron Clin Pract. 2005;99(2):c37–41.

    CAS  PubMed  Google Scholar 

  26. Baele HR, Piotrowski JJ, Yuhas J, Anderson C, Alexander JJ. Infrainguinal bypass in patients with end-stage renal disease. Surgery. 1995;117(3):319–24.

    CAS  PubMed  Google Scholar 

  27. Met R, Bipat S, Legemate DA, Reekers JA, Koelemay MJ. Diagnostic performance of computed tomography angiography in peripheral arterial disease: a systematic review and meta-analysis. JAMA. 2009;301(4):415–24.

    CAS  PubMed  Google Scholar 

  28. Catalano C, Fraioli F, Laghi A, Napoli A, Bezzi M, Pediconi F, et al. Infrarenal aortic and lower-extremity arterial disease: diagnostic performance of multi-detector row CT angiography. Radiology. 2004;231(2):555–63.

    PubMed  Google Scholar 

  29. Parfrey PS, Griffiths SM, Barrett BJ, Paul MD, Genge M, Withers J, et al. Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both. A prospective controlled study. N Engl J Med. 1989;320(3):143–9.

    CAS  PubMed  Google Scholar 

  30. Rudnick MR, Goldfarb S, Wexler L, Ludbrook PA, Murphy MJ, Halpern EF, et al. Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial. The Iohexol Cooperative Study. Kidney Int. 1995;47(1):254–61.

    CAS  PubMed  Google Scholar 

  31. Ouwendijk R, Kock MC, van Dijk LC, van Sambeek MR, Stijnen T, Hunink MG. Vessel wall calcifications at multi-detector row CT angiography in patients with peripheral arterial disease: effect on clinical utility and clinical predictors. Radiology. 2006;241(2):603–8.

    PubMed  Google Scholar 

  32. Collins R, Burch J, Cranny G, Aguiar-Ibanez R, Craig D, Wright K, et al. Duplex ultrasonography, magnetic resonance angiography, and computed tomography angiography for diagnosis and assessment of symptomatic, lower limb peripheral arterial disease: systematic review. BMJ. 2007;334(7606):1257.

    PubMed  PubMed Central  Google Scholar 

  33. Society for Vascular Surgery Lower Extremity Guidelines Writing G, Conte MS, Pomposelli FB, Clair DG, Geraghty PJ, McKinsey JF, et al. Society for Vascular Surgery practice guidelines for atherosclerotic occlusive disease of the lower extremities: management of asymptomatic disease and claudication. J Vasc Surg. 2015;61(3 Suppl):2S–41S.

    Google Scholar 

  34. Wang Y, Alkasab TK, Narin O, Nazarian RM, Kaewlai R, Kay J, et al. Incidence of nephrogenic systemic fibrosis after adoption of restrictive gadolinium-based contrast agent guidelines. Radiology. 2011;260(1):105–11.

    PubMed  Google Scholar 

  35. Lo RC, Fokkema MT, Curran T, Darling J, Hamdan AD, Wyers M, et al. Routine use of ultrasound-guided access reduces access site-related complications after lower extremity percutaneous revascularization. J Vasc Surg. 2015;61(2):405–12.

    PubMed  Google Scholar 

  36. Sobolev M, Slovut DP, Lee Chang A, Shiloh AL, Eisen LA. Ultrasound-guided catheterization of the femoral artery: a systematic review and meta-analysis of randomized controlled trials. J Invasive Cardiol. 2015;27(7):318–23.

    PubMed  Google Scholar 

  37. Berwanger O, Cavalcanti AB, Sousa AM, Buehler A, Castello-Junior HJ, Cantarelli MJ, et al. Acetylcysteine for the prevention of renal outcomes in patients with diabetes mellitus undergoing coronary and peripheral vascular angiography: a substudy of the acetylcysteine for contrast-induced nephropathy trial. Circ Cardiovasc Interv. 2013;6(2):139–45.

    CAS  PubMed  Google Scholar 

  38. Investigators ACT. Acetylcysteine for prevention of renal outcomes in patients undergoing coronary and peripheral vascular angiography: main results from the randomized Acetylcysteine for Contrast-induced nephropathy Trial (ACT). Circulation. 2011;124(11):1250–9.

    Google Scholar 

  39. Sam AD 2nd, Morasch MD, Collins J, Song G, Chen R, Pereles FS. Safety of gadolinium contrast angiography in patients with chronic renal insufficiency. J Vasc Surg. 2003;38(2):313–8.

    PubMed  Google Scholar 

  40. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG, et al. Inter-Society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg. 2007;45(Suppl S):S5–67.

    PubMed  Google Scholar 

  41. Committee TS, Jaff MR, CJ W, Hiatt WR, Fowkes GR, Dormandy J, et al. An update on methods for revascularization and expansion of the TASC lesion classification to include below-the-knee arteries: a supplement to the Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J Endovasc Ther. 2015;22(5):663–77.

    Google Scholar 

  42. Adam DJ, Beard JD, Cleveland T, Bell J, Bradbury AW, Forbes JF, et al. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet. 2005;366(9501):1925–34.

    CAS  PubMed  Google Scholar 

  43. Bradbury AW, Adam DJ, Bell J, Forbes JF, Fowkes FG, Gillespie I, et al. Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial: an intention-to-treat analysis of amputation-free and overall survival in patients randomized to a bypass surgery-first or a balloon angioplasty-first revascularization strategy. J Vasc Surg. 2010;51(5 Suppl):5S–17S.

    PubMed  Google Scholar 

  44. Bradbury AW, Adam DJ, Bell J, Forbes JF, Fowkes FG, Gillespie I, et al. Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial: analysis of amputation free and overall survival by treatment received. J Vasc Surg. 2010;51(5 Suppl):18S–31S.

    PubMed  Google Scholar 

  45. Giles KA, Pomposelli FB, Spence TL, Hamdan AD, Blattman SB, Panossian H, et al. Infrapopliteal angioplasty for critical limb ischemia: relation of TransAtlantic InterSociety Consensus class to outcome in 176 limbs. J Vasc Surg. 2008;48(1):128–36.

    PubMed  Google Scholar 

  46. Lo RC, Darling J, Bensley RP, Giles KA, Dahlberg SE, Hamdan AD, et al. Outcomes following infrapopliteal angioplasty for critical limb ischemia. J Vasc Surg. 2013;57(6):1455–63. discussion 63–4

    PubMed  PubMed Central  Google Scholar 

  47. Dormandy JA, Rutherford RB. Management of peripheral arterial disease (PAD). TASC Working Group. TransAtlantic Inter-Society Consensus (TASC). J Vasc Surg. 2000;31(1 Pt 2):S1–S296.

    CAS  PubMed  Google Scholar 

  48. Casella IB, Brochado-Neto FC, Sandri Gde A, Kalaf MJ, Godoy MR, Costa VS, et al. Outcome analysis of infrapopliteal percutaneous transluminal angioplasty and bypass graft surgery with nonreversed saphenous vein for individuals with critical limb ischemia. Vasc Endovasc Surg. 2010;44(8):625–32.

    Google Scholar 

  49. Conrad MF, Kang J, Cambria RP, Brewster DC, Watkins MT, Kwolek CJ, et al. Infrapopliteal balloon angioplasty for the treatment of chronic occlusive disease. J Vasc Surg. 2009;50(4):799–805. e4

    PubMed  Google Scholar 

  50. Pomposelli FB, Kansal N, Hamdan AD, Belfield A, Sheahan M, Campbell DR, et al. A decade of experience with dorsalis pedis artery bypass: analysis of outcome in more than 1000 cases. J Vasc Surg. 2003;37(2):307–15.

    PubMed  Google Scholar 

  51. Romiti M, Albers M, Brochado-Neto FC, Durazzo AE, Pereira CA, De Luccia N. Meta-analysis of infrapopliteal angioplasty for chronic critical limb ischemia. J Vasc Surg. 2008;47(5):975–81.

    PubMed  Google Scholar 

  52. Albers M, Romiti M, Brochado-Neto FC, De Luccia N, Pereira CA. Meta-analysis of popliteal-to-distal vein bypass grafts for critical ischemia. J Vasc Surg. 2006;43(3):498–503.

    PubMed  Google Scholar 

  53. Huang ZS, Schneider DB. Endovascular intervention for tibial artery occlusive disease in patients with critical limb ischemia. Semin Vasc Surg. 2014;27(1):38–58.

    PubMed  Google Scholar 

  54. Zeller T, Baumgartner I, Scheinert D, Brodmann M, Bosiers M, Micari A, et al. Drug-eluting balloon versus standard balloon angioplasty for infrapopliteal arterial revascularization in critical limb ischemia: 12-month results from the IN.PACT DEEP randomized trial. J Am Coll Cardiol. 2014;64(15):1568–76.

    PubMed  Google Scholar 

  55. Zeller T, Jaff MR. Favorable angiographic outcome after treatment of infrapopliteal lesions with drug-coated balloons without clinical benefit: what we learn from a meta-analysis. JACC Cardiovasc Interv. 2016;9(10):1081–2.

    PubMed  Google Scholar 

  56. Bosiers M, Scheinert D, Peeters P, Torsello G, Zeller T, Deloose K, et al. Randomized comparison of everolimus-eluting versus bare-metal stents in patients with critical limb ischemia and infrapopliteal arterial occlusive disease. J Vasc Surg. 2012;55(2):390–8.

    PubMed  Google Scholar 

  57. Rastan A, Brechtel K, Krankenberg H, Zahorsky R, Tepe G, Noory E, et al. Sirolimus-eluting stents for treatment of infrapopliteal arteries reduce clinical event rate compared to bare-metal stents: long-term results from a randomized trial. J Am Coll Cardiol. 2012;60(7):587–91.

    CAS  PubMed  Google Scholar 

  58. Rastan A, Tepe G, Krankenberg H, Zahorsky R, Beschorner U, Noory E, et al. Sirolimus-eluting stents vs. bare-metal stents for treatment of focal lesions in infrapopliteal arteries: a double-blind, multi-centre, randomized clinical trial. Eur Heart J. 2011;32(18):2274–81.

    CAS  PubMed  Google Scholar 

  59. Scheinert D, Katsanos K, Zeller T, Koppensteiner R, Commeau P, Bosiers M, et al. A prospective randomized multicenter comparison of balloon angioplasty and infrapopliteal stenting with the sirolimus-eluting stent in patients with ischemic peripheral arterial disease: 1-year results from the ACHILLES trial. J Am Coll Cardiol. 2012;60(22):2290–5.

    PubMed  Google Scholar 

  60. Siablis D, Kitrou PM, Spiliopoulos S, Katsanos K, Karnabatidis D. Paclitaxel-coated balloon angioplasty versus drug-eluting stenting for the treatment of infrapopliteal long-segment arterial occlusive disease: the IDEAS randomized controlled trial. JACC Cardiovasc Interv. 2014;7(9):1048–56.

    PubMed  Google Scholar 

  61. Jaff MR, White CJ, Hiatt WR, Fowkes GR, Dormandy J, Razavi M, et al. An update on methods for revascularization and expansion of the TASC lesion classification to include below-the-knee arteries: a supplement to the inter-society consensus for the management of peripheral arterial disease (TASC II): the TASC steering committee. Catheter Cardiovasc Interv. 2015;86(4):611–25.

    PubMed  Google Scholar 

  62. Antoniou GA, Chalmers N, Kanesalingham K, Antoniou SA, Schiro A, Serracino-Inglott F, et al. Meta-analysis of outcomes of endovascular treatment of infrapopliteal occlusive disease with drug-eluting stents. J Endovasc Ther. 2013;20(2):131–44.

    PubMed  Google Scholar 

  63. Fusaro M, Cassese S, Ndrepepa G, Tepe G, King L, Ott I, et al. Drug-eluting stents for revascularization of infrapopliteal arteries: updated meta-analysis of randomized trials. JACC Cardiovasc Interv. 2013;6(12):1284–93.

    PubMed  Google Scholar 

  64. Katsanos K, Spiliopoulos S, Diamantopoulos A, Karnabatidis D, Sabharwal T, Siablis D. Systematic review of infrapopliteal drug-eluting stents: a meta-analysis of randomized controlled trials. Cardiovasc Intervent Radiol. 2013;36(3):645–58.

    PubMed  Google Scholar 

  65. Yang X, Lu X, Ye K, Li X, Qin J, Jiang M. Systematic review and meta-analysis of balloon angioplasty versus primary stenting in the infrapopliteal disease. Vasc Endovasc Surg. 2014;48(1):18–26.

    Google Scholar 

  66. Menard MT, Farber A, Assmann SF, Choudhry NK, Conte MS, Creager MA, et al. Design and rationale of the best endovascular versus Best Surgical Therapy for patients with Critical Limb Ischemia (BEST-CLI) trial. J Am Heart Assoc. 2016;5(7):e003219.

    PubMed  PubMed Central  Google Scholar 

  67. Lancaster RT, Conrad MF, Patel VI, Cambria RP, LaMuraglia GM. Predictors of early graft failure after infrainguinal bypass surgery: a risk-adjusted analysis from the NSQIP. Eur J Vasc Endovasc Surg. 2012;43(5):549–55.

    CAS  PubMed  Google Scholar 

  68. Pomposelli FB Jr, Marcaccio EJ, Gibbons GW, Campbell DR, Freeman DV, Burgess AM, et al. Dorsalis pedis arterial bypass: durable limb salvage for foot ischemia in patients with diabetes mellitus. J Vasc Surg. 1995;21(3):375–84.

    PubMed  Google Scholar 

  69. LaMuraglia GM, Conrad MF, Chung T, Hutter M, Watkins MT, Cambria RP. Significant perioperative morbidity accompanies contemporary infrainguinal bypass surgery: an NSQIP report. J Vasc Surg. 2009;50(2):299–304. e1-4

    PubMed  Google Scholar 

  70. Nguyen LL, Brahmanandam S, Bandyk DF, Belkin M, Clowes AW, Moneta GL, et al. Female gender and oral anticoagulants are associated with wound complications in lower extremity vein bypass: an analysis of 1404 operations for critical limb ischemia. J Vasc Surg. 2007;46(6):1191–7.

    PubMed  PubMed Central  Google Scholar 

  71. Gibbons GW, Burgess AM, Guadagnoli E, Pomposelli FB Jr, Freeman DV, Campbell DR, et al. Return to well-being and function after infrainguinal revascularization. J Vasc Surg. 1995;21(1):35–44; discussion 5.

    CAS  PubMed  Google Scholar 

  72. Abou-Zamzam AM Jr, Lee RW, Moneta GL, Taylor LM Jr, Porter JM. Functional outcome after infrainguinal bypass for limb salvage. J Vasc Surg. 1997;25(2):287–95. discussion 95–7

    PubMed  Google Scholar 

  73. Veith FJ, Gupta SK, Ascer E, White-Flores S, Samson RH, Scher LA, et al. Six-year prospective multicenter randomized comparison of autologous saphenous vein and expanded polytetrafluoroethylene grafts in infrainguinal arterial reconstructions. J Vasc Surg. 1986;3(1):104–14.

    CAS  PubMed  Google Scholar 

  74. Leather RP, Powers SR, Karmody AM. A reappraisal of the in situ saphenous vein arterial bypass: its use in limb salvage. Surgery. 1979;86(3):453–61.

    CAS  PubMed  Google Scholar 

  75. Buchbinder D, Rolins DL, Verta MJ, LaRosa MP, Ryan TJ, Meyer JP, et al. Early experience with in situ saphenous vein bypass for distal arterial reconstruction. Surgery. 1986;99(3):350–7.

    CAS  PubMed  Google Scholar 

  76. Hurley JJ, Auer AI, Binnington HB, Hershey FB, Swensson EE, Woods JJ Jr, et al. Comparison of initial limb salvage in 98 consecutive patients with either reversed autogenous or in situ vein bypass graft procedures. Am J Surg. 1985;150(6):777–81.

    CAS  PubMed  Google Scholar 

  77. Strayhorn EC, Wohlgemuth S, Deuel M, Glickman MH, Hurwitz RL. Early experience utilizing the in situ saphenous vein technique in 54 patients. J Cardiovasc Surg. 1988;29(2):161–5.

    CAS  Google Scholar 

  78. Bush HL Jr, Corey CA, Nabseth DC. Distal in situ saphenous vein grafts for limb salvage. Increased operative blood flow and postoperative patency. Am J Surg. 1983;145(4):542–8.

    PubMed  Google Scholar 

  79. Cambria RP, Megerman J, Brewster DC, Warnock DF, Hasson J, Abbott WM. The evolution of morphologic and biomechanical changes in reversed and in-situ vein grafts. Ann Surg. 1987;205(2):167–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Taylor LM Jr, Edwards JM, Porter JM. Present status of reversed vein bypass grafting: five-year results of a modern series. J Vasc Surg. 1990;11(2):193–205. discussion 6

    PubMed  Google Scholar 

  81. Pomposelli FB Jr, Jepsen SJ, Gibbons GW, Campbell DR, Freeman DV, Gaughan BM, et al. A flexible approach to infrapopliteal vein grafts in patients with diabetes mellitus. Arch Surg. 1991;126(6):724–7. discussion 7–9

    PubMed  Google Scholar 

  82. Ascer E, Veith FJ, Gupta SK, White SA, Bakal CW, Wengerter K, et al. Short vein grafts: a superior option for arterial reconstructions to poor or compromised outflow tracts? J Vasc Surg. 1988;7(2):370–8.

    CAS  PubMed  Google Scholar 

  83. Cantelmo NL, Snow JR, Menzoian JO, LoGerfo FW. Successful vein bypass in patients with an ischemic limb and a palpable popliteal pulse. Arch Surg. 1986;121(2):217–20.

    CAS  PubMed  Google Scholar 

  84. Stonebridge PA, Tsoukas AI, Pomposelli FB Jr, Gibbons GW, Campbell DR, Freeman DV, et al. Popliteal-to-distal bypass grafts for limb salvage in diabetics. Eur J Vasc Surg. 1991;5(3):265–9.

    CAS  PubMed  Google Scholar 

  85. Holzenbein TJ, Pomposelli FB Jr, Miller A, Contreras MA, Gibbons GW, Campbell DR, et al. Results of a policy with arm veins used as the first alternative to an unavailable ipsilateral greater saphenous vein for infrainguinal bypass. J Vasc Surg. 1996;23(1):130–40.

    CAS  PubMed  Google Scholar 

  86. Tarry WC, Walsh DB, Birkmeyer NJ, Fillinger MF, Zwolak RM, Cronenwett JL. Fate of the contralateral leg after infrainguinal bypass. J Vasc Surg. 1998;27(6):1039–47. discussion 47–8

    CAS  PubMed  Google Scholar 

  87. Miller A, Campbell DR, Gibbons GW, Pomposelli FB Jr, Freeman DV, Jepsen SJ, et al. Routine intraoperative angioscopy in lower extremity revascularization. Arch Surg. 1989;124(5):604–8.

    CAS  PubMed  Google Scholar 

  88. Stonebridge PA, Miller A, Tsoukas A, Brophy CM, Gibbons GW, Freeman DV, et al. Angioscopy of arm vein infrainguinal bypass grafts. Ann Vasc Surg. 1991;5(2):170–5.

    CAS  PubMed  Google Scholar 

  89. Balshi JD, Cantelmo NL, Menzoian JO, LoGerfo FW. The use of arm veins for infrainguinal bypass in end-stage peripheral vascular disease. Arch Surg. 1989;124(9):1078–81.

    CAS  PubMed  Google Scholar 

  90. Faries PL, Arora S, Pomposelli FB Jr, Pulling MC, Smakowski P, Rohan DI, et al. The use of arm vein in lower-extremity revascularization: results of 520 procedures performed in eight years. J Vasc Surg. 2000;31(1 Pt 1):50–9.

    CAS  PubMed  Google Scholar 

  91. Neville RF, Capone A, Amdur R, Lidsky M, Babrowicz J, Sidawy AN. A comparison of tibial artery bypass performed with heparin-bonded expanded polytetrafluoroethylene and great saphenous vein to treat critical limb ischemia. J Vasc Surg. 2012;56(4):1008–14.

    PubMed  Google Scholar 

  92. Conte MS, Bandyk DF, Clowes AW, Moneta GL, Seely L, Lorenz TJ, et al. Results of PREVENT III: a multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery. J Vasc Surg. 2006;43(4):742–51. discussion 51

    PubMed  Google Scholar 

  93. Conte MS. Diabetic revascularization: endovascular versus open bypass—do we have the answer? Semin Vasc Surg. 2012;25(2):108–14.

    PubMed  Google Scholar 

  94. Akbari CM, Pomposelli FB Jr, Gibbons GW, Campbell DR, Pulling MC, Mydlarz D, et al. Lower extremity revascularization in diabetes: late observations. Arch Surg. 2000;135(4):452–6.

    CAS  PubMed  Google Scholar 

  95. Pomposelli FB Jr, Jepsen SJ, Gibbons GW, Campbell DR, Freeman DV, Miller A, et al. Efficacy of the dorsal pedal bypass for limb salvage in diabetic patients: short-term observations. J Vasc Surg. 1990;11(6):745–51. discussion 51–2

    PubMed  Google Scholar 

  96. Tannenbaum GA, Pomposelli FB Jr, Marcaccio EJ, Gibbons GW, Campbell DR, Freeman DV, et al. Safety of vein bypass grafting to the dorsal pedal artery in diabetic patients with foot infections. J Vasc Surg. 1992;15(6):982–8. discussion 9–90

    CAS  PubMed  Google Scholar 

  97. Andros G, Harris RW, Salles-Cunha SX, Dulawa LB, Oblath RW, Apyan RL. Bypass grafts to the ankle and foot. J Vasc Surg. 1988;7(6):785–94.

    CAS  PubMed  Google Scholar 

  98. Darling RC 3rd, Chang BB, Shah DM, Leather RP. Choice of peroneal or dorsalis pedis artery bypass for limb salvage. Semin Vasc Surg. 1997;10(1):17–22.

    PubMed  Google Scholar 

  99. Levine AW, Davis RC, Gingery RO, Anderegg DD. In situ bypass to the dorsalis pedis and tibial arteries at the ankle. Ann Vasc Surg. 1989;3(3):205–9.

    CAS  PubMed  Google Scholar 

  100. Shanik DG, Auer AI, Hershey FB. Vein bypass to the dorsalis pedis artery for limb ischaemia. Ir Med J. 1982;75(2):54–6.

    CAS  PubMed  Google Scholar 

  101. Shieber W, Parks C. Dorsalis pedis artery in bypass grafting. Am J Surg. 1974;128(6):752–5.

    CAS  PubMed  Google Scholar 

  102. Hughes K, Domenig CM, Hamdan AD, Schermerhorn M, Aulivola B, Blattman S, et al. Bypass to plantar and tarsal arteries: an acceptable approach to limb salvage. J Vasc Surg. 2004;40(6):1149–57.

    PubMed  Google Scholar 

  103. Driver VR, Fabbi M, Lavery LA, Gibbons G. The costs of diabetic foot: the economic case for the limb salvage team. J Vasc Surg. 2010;52(3 Suppl):17S–22S.

    PubMed  Google Scholar 

  104. Saltzberg SS, Pomposelli FB Jr, Belfield AK, Sheahan MG, Campbell DR, Skillman JJ, et al. Outcome of lower-extremity revascularization in patients younger than 40 years in a predominantly diabetic population. J Vasc Surg. 2003;38(5):1056–9.

    PubMed  Google Scholar 

  105. Ramdev P, Rayan SS, Sheahan M, Hamdan AD, Logerfo FW, Akbari CM, et al. A decade experience with infrainguinal revascularization in a dialysis-dependent patient population. J Vasc Surg. 2002;36(5):969–74.

    PubMed  Google Scholar 

  106. Albers M, Romiti M, Braganca Pereira CA, Fonseca RL, da Silva Junior M. A meta-analysis of infrainguinal arterial reconstruction in patients with end-stage renal disease. Eur J Vasc Endovasc Surg. 2001;22(4):294–300.

    CAS  PubMed  Google Scholar 

  107. Goodney PP, Tarulli M, Faerber AE, Schanzer A, Zwolak RM. Fifteen-year trends in lower limb amputation, revascularization, and preventive measures among medicare patients. JAMA Surg. 2015;150(1):84–6.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas W. Jones MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jones, D.W., Wyers, M.C. (2018). Lower Extremity Arterial Reconstruction in Patients with Diabetes Mellitus: Principles of Treatment. In: Veves, A., Giurini, J., Guzman, R. (eds) The Diabetic Foot. Contemporary Diabetes. Humana, Cham. https://doi.org/10.1007/978-3-319-89869-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89869-8_20

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-319-89868-1

  • Online ISBN: 978-3-319-89869-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics