Biomechanics of the Diabetic Foot: The Road to Foot Ulceration

  • Panagiotis V. Tsaklis
  • Nikolaos Tentolouris
Part of the Contemporary Diabetes book series (CDI)


Biomechanics is a branch of the life sciences for the study of the structure and function of biological systems including humans by means of the methods of mechanics. Biomechanics is clearly relevant to diabetic foot, since the majority of the feet injuries are related to the mechanical stress applied to the structures of the feet. Thus, callus is formed in the feet when increased pressure is applied for a prolonged period of time; an ulcer will not heal if there is no sufficient offloading; and callus or ulcers will recur if there is no proper offloading of the vulnerable areas of the feet. Knowing, therefore, the basic biomechanics of the foot is important for understanding the mechanism of development of ulcers, for organizing prevention methods, for the treatment of ulcers, and for prevention of relapses. For the Biomechanical and functional evaluation of the diabetic foot and the general mobility of the person, must be a holistic approach which include: the morphological investigation of the foot; the mobility measurements (Range of Motion) of the foot joints; the recording and evaluation of the pressures around the plantar area and the weight distribution between legs (weight shift %); the Gait assessment and evaluation through kinematic and kinetic analysis of the movement of the foot and other body segments, like pelvis and trunk; and the assessment of the static and dynamic balance.


Foot biomechanics Plantar pressures Diabetic ulcer pathogenesis Mobility GAIT and balance 


  1. 1.
    Wernick J, Volpe RG. Lower extremity function and normal mechanics. In: Valmassy RL, editor. Clinical biomechanics of the lower extremities. St Louis, MO: Mosby Year Book; 1996. p. 2–57.Google Scholar
  2. 2.
    Nester CJ. Review of literature on the axis of rotation at the subtalar joint. Foot. 1998;8:111–8.CrossRefGoogle Scholar
  3. 3.
    Sarrafian SK. Biomechanics of the subtalar joint complex. Clin Orthop Res. 1993;290:17–26.Google Scholar
  4. 4.
    Hutton WC, Dhanendran M. The mechanics of normal and hallux valgus feet—a quantitative study. Clin Orthop Relat Res. 1981;157:7–13.Google Scholar
  5. 5.
    Root ML, Orien WP, Weed JH. Clinical biomechanics: normal and abnormal function of thefoot. Los Angeles, CA: Clinical Biomechanics Corp.; 1977. p. 2.Google Scholar
  6. 6.
    Nack JD, Phillips RD. Shock absorption. Clin Podiatr Med Surg. 1990;7:391–7.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Gibbs RC, Boxer MC. Abnormal biomechanics of feet and their cause of hyperkeratoses. J Am Acad Dermatol. 1982;6:1061–9.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Birke JA, Franks BD, Foto JG. First ray joint limitation, pressure, and ulceration of the first metatarsal head in diabetes mellitus. Foot Ankle. 1995;16:277–84.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Cavanagh P, Ulbrecht JS. What the practicing clinician should know about foot biomechanics. In: Boulton AJM, Cavanagh P, Rayman G, editors. The foot in diabetes. 4th ed. Chichester: John Wiley and Sons Ltd.; 2006. p. 68–91.CrossRefGoogle Scholar
  10. 10.
    Perry JE, Hall JO, Davis BL. Simultaneous measurement of plantar pressure and shear forces in diabetic individuals. Gait Posture. 2002;15:101–7.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Cavanagh PR, Ulbrecht JS, Caputo GM. New developments in the biomechanics of the diabetic foot. Diabetes Metab Res Rev. 2000;16(Suppl 1):S6–S10.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Rajala S, Lekkala J. Plantar shear stress measurements - a review. Clin Biomech (Bristol, Avon). 2014;29:475–83.CrossRefGoogle Scholar
  13. 13.
    Veves A, Murray HJ, Young MJ, Boulton AJ. The risk of foot ulceration in diabetic patients with high foot pressure: a prospective study. Diabetologia. 1992;35:660–3.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Ledoux WR, Shofer JB, Cowley MS, Ahroni JH, Cohen V, Boyko EJ. Diabetic foot ulcer incidence in relation to plantar pressure magnitude and measurement location. J Diabetes Complications. 2013;27:621–6.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Guiotto A, Sawacha Z, Guarneri G, Cristoferi G, Avogaro A, Cobelli C. The role of foot morphology on foot function in diabetic subjects with or without neuropathy. Gait Posture. 2013;37:603–10.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Cavanagh PR, Young MJ, Adams JE, Vickers KL, Boulton AJ. Radiographic abnormalities in the feet of patients with diabetic neuropathy. Diabetes Care. 1994;17:201–9.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Andersen H, Gadeberg PC, Brock B, Jakobsen J. Muscular atrophy in diabetic neuropathy: a stereological magnetic resonance imaging study. Diabetologia. 1997;40:1062–9.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Andersen H, Gjerstad MD, Jakobsen J. Atrophy of foot muscles. A measure of diabetic neuropathy. Diabetes Care. 2004;27:2382–5.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Bus SA, Yang QX, Wang JH, Smith MB, Wunderlich R, Cavanagh PR. Intrinsic muscle atrophy and toe deformity in the diabetic neuropathic foot. A magnetic resonance imaging study. Diabetes Care. 2002;25:1444–50.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Fleckenstein JL, Watumull D, Conner KE, Ezaki M, Greenlee RG Jr, Bryan WW, Chason DP, Parkey RW, Peshock RM, Purdy PD. Denervated human skeletal muscle: MR imaging evaluation. Radiology. 1993;187:213–8.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Suzuki E, Kashiwagi A, Hidaka H, Maegawa H, Nishio Y, Kojima H, Haneda M, Yasuda H, Morikawa S, Inubushi T, Kikkawa R. 1H- and 31P-magnetic resonance spectroscopy and imaging as a new diagnostic tool to evaluate neuropathic foot ulcers in type II diabetic patients. Diabetologia. 2000;43:165–72.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Boyko EJ, Ahroni JH, Stensel V, Forsberg RC, Davignon DR, Smith DG. A prospective study of risk factors for diabetic foot ulcer. Diabetes Care. 1999;22:1036–42.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Reiber GE, Vileikyte L, Boyko EJ, Del Aguila M, Smith DG, Lavery LA, Boulton AJM. Causal pathways for incident lower-extremity ulcers in patients with diabetes from two settings. Diabetes Care. 1999;22:157–62.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Myerson MS, Shereff MJ. The pathological anatomy of claw and hammer toes. J Bone Joint Surg. 1989;71-A:45–9.CrossRefGoogle Scholar
  25. 25.
    Bus SA, Maas M, Cavanagh PR, Michels RPJ, Levi M. Plantar fat-pad displacement in neuropathic diabetic patients with toe deformity. A magnetic resonance imaging study. Diabetes Care. 2004;27:2376–81.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Armstrong DG, Lavery LA. Elevated peak plantar pressures in patients who have Charcot arthropathy. J Bone Joint Surg Am. 1998;80:365–9.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Garbalosa JC, Cavanagh PR, Wu G, et al. Foot function in diabetic patients after partial amputation. Foot Ankle Int. 1996;17:43–8.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Lavery LA, Lavery DC, Quebedaux-Farnham TL. Increased foot pressures after great toe amputation in diabetes. Diabetes Care. 1995;18:1460–2.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Quebedeaux T, Lavery LA, Lavery DC. The development of foot deformities and ulcers after great toe amputation in diabetes. Diabetes Care. 1996;19:165–7.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Pham H, Armstrong DG, Harvey C, Harkless LB, Giurini JM, Veves A. Screening techniques to identify people at high risk for diabetic foot ulceration. A prospective multicenter trial. Diabetes Care. 2000;23:606–11.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Murray HJ, Young MJ, Hollis S, Boulton AJM. The association between callus formation, high pressures and neuropathy in diabetic foot ulceration. Diabet Med. 1996;13:979–82.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Tentolouris N, Marinou K, Kokotis P, Karanti A, Diakoumopoulou E, Katsilambros N. Sudomotor dysfunction is associated with foot ulceration in diabetes. Diabet Med. 2009;26:302–5.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Tentolouris N, Voulgari C, Liatis S, Kokkinos A, Eleftheriadou I, Makrilakis K, Marinou K, Katsilambros N. Moisture status of the skin of the feet assessed by the visual test neuropad correlates with foot ulceration in diabetes. Diabetes Care. 2010;33:1112–4.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Gilmore JE, Allen JA, Hayes JR. Autonomic function in neuropathic diabetic patients with foot ulceration. Diabetes Care. 1993;16:61–7.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Kida Y, Kashiwagi A, Nishio Y, Kodama M, Abe N, Shigeta Y. Is difference of arterial and venous oxygen content a possible marker for diabetic foot? Diabetes Care. 1988;11:515–6.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Bolton NR, Smith KE, Pilgram TK, Mueller MJ, Bae KT. Computed tomography to visualize and quantify the plantar aponeurosis and flexor hallucis longus tendon in the diabetic foot. Clin Biomech (Bristol, Avon). 2005;20:540–6.CrossRefGoogle Scholar
  37. 37.
    Giacomozzi C, D’Ambrogi E, Uccioli L, Macellari V. Does the thickening of Achilles tendon and plantar fascia contribute to the alteration of diabetic foot loading? Clin Biomech (Bristol, Avon). 2005;20:532–9.CrossRefGoogle Scholar
  38. 38.
    Hewston Pand Deshpande N. Falls and balance impairments in older adults with type 2 diabetes: thinking beyond diabetic peripheral neuropathy. Can J Diabetes. 2016;40:6–9.CrossRefGoogle Scholar
  39. 39.
    Fernando M, Crowther R, Lazzarini P, Sangla K, Cunningham M, Buttner P, Golledge J. Biomechanical characteristics of peripheral diabetic neuropathy: a systematic review and meta-analysis of findings from the gait cycle, muscle activity and dynamic barefoot plantar pressure. Clin Biomech. 2013;28:831–45.CrossRefGoogle Scholar
  40. 40.
    Sacco IC, Amadio AC. Influence of the diabetic neuropathy on the behavior of electromyographic and sensorial responses in treadmill gait. Clin Biomech (Bristol, Avon). 2003;18:426–34.CrossRefGoogle Scholar
  41. 41.
    Mueller MJ, Minor SD, Sahrmann SA, Schaaf JA, Strube MJ. Differences in the gait characteristics of patients with diabetes and peripheral neuropathy compared with age-matched controls. Phys Ther. 1994;74:299–308. discussion 309-313PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Salsich GB, Brown M, Mueller MJ. Relationships between plantar flexor muscle stiffness, strength, and range of motion in subjects with diabetes-peripheral neuropathy compared to age-matched controls. J Orthop Sports Phys Ther. 2000;30:473–83.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Salsich GB, Mueller MJ, Sahrmann SA. Passive ankle stiffness in subjects with diabetes and peripheral neuropathy versus an age-matched comparison group. Phys Ther. 2000;80:352–62.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Salsich GB, Mueller MJ. Effect of plantar flexor muscle stiffness on selected gait characteristics. Gait Posture. 2000;11:207–16.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Bonds DE, Larson JC, Schwartz AV, Strotmeyer ES, Robbins J, Rodriguez BL, Johnson KC, Margolis KL. Risk of fracture in women with type 2 diabetes: the Women’s Health Initiative Observational Study. J Clin Endocrinol Metab. 2006;91:3404–10.CrossRefPubMedGoogle Scholar
  46. 46.
    Sinacore DR, Bohnert KL, Hastings MK, Johnson JE. Mid foot kinetics characterize structural polymorphism in diabetic foot disease. Clin Biomech (Bristol, Avon). 2008;23:653–61.CrossRefGoogle Scholar
  47. 47.
    Vlassara H, Striker GE. Advanced glycation end products in diabetes and diabetic complications. Endocrinol Metab Clin North Am. 2013;42:697–719.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Brownlee M. Glycation products and the pathogenesis of diabetic complications. Diabetes Care. 1992;15:1835–43.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Sibbald RG, Landolt SJ, Toth D. Skin and diabetes. Endocrinol Metab Clin North Am. 1996;25:463–72.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Reihsner R, Melling M, Pfeiler W, Menzel EJ. Alterations of biochemical and two-dimensional biomechanical properties of human skin in diabetes mellitus as compared to effects of in vitro non-enzymatic glycation. Clin Biomech (Bristol, Avon). 2000;15:379–86.CrossRefGoogle Scholar
  51. 51.
    Delbridge L, Ellis CS, Robertson K, Lequesne LP. Non-enzymatic glycosylation of keratin from the stratum corneum of the diabetic foot. Br J Dermatol. 1985;112:547–54.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Crisp AJ, Heathcote JG. Connective tissue abnormalities in diabetes mellitus. J Roy Coll Phys. 1984;18:132–41.Google Scholar
  53. 53.
    Vlassara H, Brownlee M, Cerami A. Nonenzymatic glycosylation: role in the pathogenesis of diabetic complications. Clin Chem. 1986;32:B37–41.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Fitzcharles MA, Duby S, Waddell RW, Banks E, Karsh J. Limitation of joint mobility(cheiroarthropathy) in adult noninsulin-dependent diabetic patients. Ann Rheum Dis. 1984;43:251–7.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Mueller MJ, Diamond JE, Delitto A, Sinacore DR. Insensitivity, limited joint mobility, and plantar ulcers in patients with diabetes mellitus. Phys Ther. 1989;69:453–62.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Pal B, Anderson J, Dick WC, Griffiths ID. Limitation of joint mobility and shoulder capsulitis in insulin- and non-insulin-dependent diabetes mellitus. Br J Rheumatol. 1986;25:147–51.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Fernando DJ, Masson EA, Veves A, Boulton AJ. Relationship of limited joint mobility to abnormal foot pressures and diabetic foot ulceration. Diabetes Care. 1991;14:8–11.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Veves A, Sarnow MR, Giurini JM, Rosenblum BI, Lyons TE, Chrzan JS, Habershaw GM. Differences in joint mobility and foot pressure between black and white diabetic patients. Diabet Med. 1995;12:585–9.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Andersen H, Mogensen PH. Disordered mobility of large joints in association with neuropathy in patients with long-standing insulin-dependent diabetes mellitus. Diabet Med. 1997;14:221–7.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Delbridge L, Perry P, Marr S, et al. Limited joint mobility in the diabetic foot: relationship to neuropathic ulceration. Diabet Med. 1988;5:333–7.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Viswanathan V, Madhavan S, Rajasekar S, Kumpatla S. Limited joint mobility and plantar pressure in type 1 diabetic subjects in India. J Assoc Physicians India. 2008;56:509–12.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Turner DE, Helliwell PS, Burton AK, Woodburn J. The relationship between passive range of motion and range of motion during gait and plantar pressure measurements. Diabet Med. 2007;24:1240–6.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Sanz-Corbalán I, Lázaro-Martínez JL, García-Morales E, Aragón-Sánchez J, Carabantes-Alarcón D, García-Álvarez Y. Relationship of limited joint mobility and foot deformities with neurological examination in patients with diabetes. Exp Clin Endocrinol Diabetes. 2013;121:239–43.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Zimny S, Schatz H, Pfohl M. The role of limited joint mobility in diabetic patients with an at-risk foot. Diabetes Care. 2004;27:942–6.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Francia P, Seghieri G, Gulisano M, De Bellis A, Toni S, Tedeschi A, Anichini R. The role of joint mobility in evaluating and monitoring the risk of diabetic foot ulcer. Diabetes Res Clin Pract. 2015;108:398–404.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Armstrong DG, Steinberg JS, Stacpoole-Shea S, et al. The potential benefit of passive range of motion exercise to reduce peak plantar foot pressure in the diabetic foot. Proceedings from the 3rd International Symposium on the Diabetic Foot. 1999; p. 76.Google Scholar
  67. 67.
    Francia P, Anichini R, De Bellis A, Seghieri G, Lazzeri R, Paternostro F, Gulisano M. Diabetic foot prevention: the role of exercise therapy in the treatment of limitedjointmobility, muscle weakness and reduced gait speed. Ital J Anat Embryol. 2015;120:21–32.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Nargi SE, Colen LB, Liuzzi FJ, et al. PTB treatment restores joint mobility in a new model of diabetic cheiroarthropathy. Diabetes. 1999;48(Suppl. 1):A17.Google Scholar
  69. 69.
    Diamond JE, Mueller MJ, Delitto A. Effect of total contact cast immobilization on subtalar and talocrural joint motion in patients with diabetes mellitus. Phys Ther. 1993;73:310–5.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Gooding GA, Stess RM, Graf PM, Moss KM, Louie KS, Grunfeld C. Sonography of the sole of the foot. Evidence for loss of foot pad thickness in diabetes and its relationship to ulceration of the foot. Invest Radiol. 1986;21:45–8.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Mueller MJ, Smith KE, Commean PK, Robertson DD, Johnson JE. Use of computed tomography and plantar pressure measurement for management of neuropathic ulcers in patients with diabetes. Phys Ther. 1999;79:296–307.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Masson EA, Hay EM, Stockley I, Veves A, Betts RP, Boulton AJ. Abnormal foot pressures alone may not cause ulceration. Diabet Med. 1989;6:426–8.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    D’Ambrogi E, Giurato L, D’Agostino MA, Giacomozzi C, Macellari V, Caselli A, Uccioli L. Contribution of plantar fascia to the increased forefoot pressures in diabetic patients. Diabetes Care. 2003;26:1525–9.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Taylor R, Stainsby GD, Richardson DL. Rupture of the plantar fascia in the diabetic foot leads to toe dorsiflexion deformity [abstract 1071]. Diabetologia. 1998;41(Suppl. 1):A277.Google Scholar
  75. 75.
    Edmonds ME, Blundell MP, Morris ME, Thomas EM, Cotton LT, Watkins PJ. Improved survival of the diabetic foot: the role of a specialized foot clinic. Q J Med. 1986;60:763–71.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Armstrong DG, Peters EJ, Athanasiou KA, Lavery LA. Is there a critical level of plantar foot pressure to identify patients at risk for neuropathic foot ulceration? J Foot Ankle Surg. 1998;37:303–7.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Lavery LA, Armstrong DG, Wunderlich RP, Tredwell J, Boulton AJ. Predictive value of foot pressure assessment as part of a population-based diabetes disease management program. Diabetes Care. 2003;26:1069–73.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Stess RM, Jensen SR, Mirmiran R. The role of dynamic plantar pressures in diabetic foot ulcers. Diabetes Care. 1997;20:855–8.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Maluf KS, Mueller MJ. Novel Award 2002. Comparison of physical activity and cumulative plantar tissue stress among subjects with and without diabetes mellitus and a history of recurrent plantar ulcers. Clin Biomech (Bristol, Avon). 2003;18:567–75.CrossRefGoogle Scholar
  80. 80.
    Armstrong DG, Lavery LA, Holtz-Neiderer K, Mohler MJ, Wendel CS, Nixon BP, Boulton AJ. Variability in activity may precede diabetic foot ulceration. Diabetes Care. 2004;27:1980–4.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Busch K, Chantelau E. Effectiveness of a new brand of stock “diabetic” shoes to protect against diabetic foot ulcer relapse. A prospective cohort study. Diabet Med. 2003;20:665–9.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Uccioli L, Faglia E, Monticone G, Favales F, Durola L, Aldeghi A, Quarantiello A, Calia P, Menzinger G. Manufactured shoes in the prevention of diabetic foot ulcers. Diabetes Care. 1995;18:1376–8.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Waaijman R, Keukenkamp R, de Haart M, Polomski WP, Nollet F, Bus SA. Adherence to wearing prescription custom-made footwear in patients with diabetes at high risk for plantar foot ulceration. Diabetes Care. 2013;36:1613–8.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Bus SA, Waaijman R, Arts M, de Haart M, Busch-Westbroek T, van Baal J, Nollet F. Effect of custom-made footwear on foot ulcer recurrence in diabetes: a multicenter randomized controlled trial. Diabetes Care. 2013;36:4109–16.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Bus SA, Valk GD, van Deursen RW, Armstrong DG, Caravaggi C, Hlavácek P, Bakker K, Cavanagh PR. The effectiveness of footwear and offloading interventions to prevent and heal foot ulcers and reduce plantar pressure in diabetes: a systematic review. Diabetes Metab Res Rev. 2008;24(Suppl 1):S162–80.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Mueller MJ, Zou D, Lott DJ. “Pressure gradient” as an indicator of plantar skin injury. Diabetes Care. 2005;28:2908–12.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Zou D, Mueller MJ, Lott DJ. Effect of peak pressure and pressure gradient on subsurface shear stresses in the neuropathic foot. J Biomech. 2007;40:883–90.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Barn R, Waaijman R, Nollet F, Woodburn J, Bus SA. Predictors of barefoot plantar pressure during walking in patients with diabetes, peripheral neuropathy and a history of ulceration. PLoS One. 2015;10(2):e0117443.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Wukich DK, Raspovic KM, Hobizal KB, Sadoskas D. Surgical management of Charcot neuroarthropathy of the ankle and hindfoot in patients with diabetes. Diabetes Metab Res Rev. 2016;32(Suppl 1):292–6.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Wrobel JS, Najafi B. Diabetic foot biomechanics and gait dysfunction. J Diabetes Sci Technol. 2010;4:833–45.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Muhammad AR, Zulkarnain A, Rajendra A, Tan PH, Kannathal N, Ng EYK, Law C, Tavintharan S, Wong YS, Sum CF. Analysis of plantar pressure in diabetic type 2 subjects with and without neuropathy. ITBM-RBM. 2006;27:46–55.Google Scholar
  92. 92.
    Lamola G, Venturi M, Martelli D, Iacopi E, Fanciullacci C, Coppelli A, Rossi B, Piaggesi A, Chisari C. Quantitative assessment of early biomechanical modifications in diabetic foot patients: the role of foot kinematics and step width. J Neuroeng Rehabil. 2015;12:98.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Sawacha Z, Cristoferi G, Guarneri G, Corazza S, Donà G, Denti P, Facchinetti A, Avogaro A, Cobelli C. Characterizing multisegment foot kinematics during gait in diabetic foot patients. J Neuroeng Rehabil. 2009;6:37.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Savelberg HH, Schaper NC, Willems PJ, de lange TL, Meijer K. Redistribution of joint moments is associated with changed plantar pressure in diabetic polyneuropathy. BMC Musculoskelet Disord. 2009;10:16.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Sawacha Z, Gabriella G, Cristoferi G, Guiotto A, Avogaro A, Cobelli C. Diabetic gait and posture abnormalities: a biomechanical investigation through three dimensional gait analysis. Clin Biomech. 2009b;24:722–8.CrossRefGoogle Scholar
  96. 96.
    Morag E, Cavanagh PR. Structural and functional predictors of regional peak pressures under the foot during walking. J Biomech. 1999;32:359–70.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Young MJ, Cavanagh PR, Thomas G, Johnson MM, Murray H, Boulton AJ. The effect of callus removal on dynamic plantar foot pressures in diabetic patients. Diabet Med. 1992;9:55–7.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Delbridge L, Ctercteko G, Fowler C, Reeve TS, Le Quesne LP. The aetiology of diabetic neuropathic ulceration of the foot. Br J Surg. 1985;72:1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Brown GL, Curtsinger LJ, White M, Mitchell RO, Pietsch J, Nordquist R, von Fraunhofer A, Schultz GS. Acceleration of tensile strength of incisions treated with EGF and TGF-beta. Ann Surg. 1988;208:788–94.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Holm-Pedersen P, Viidik A. Tensile properties and morphology of healing wounds in young and old rats. Scand J Plast Reconstr Surg. 1972;6:624–35.Google Scholar
  101. 101.
    Schaper NC, Andros G, Apelqvist J, Bakker K, Lammer J, Lepantalo M, Mills JL, Reekers J, Shearman CP, Zierler RE, Hinchliffe RJ, International Working Group on Diabetic Foot. Specific guidelines for the diagnosis and treatment of peripheral arterial disease in a patient with diabetes and ulceration of the foot 2011. Diabetes Metab Res Rev. 2012;28(Suppl 1):236–7.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Kumar S, Ashe HA, Parnell LN, Fernando DJ, Tsigos C, Young RJ, Ward JD, Boulton AJ. The prevalence of foot ulceration and its correlates in type 2 diabetic patients: a population-based study. Diabet Med. 1994;11:480–4.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Prompers L, Huijberts M, Apelqvist J, Jude E, Piaggesi A, Bakker K, Edmonds M, Holstein P, Jirkovska A, Mauricio D, Ragnarson Tennvall G, Reike H, Spraul M, Uccioli L, Urbancic V, Van Acker K, van Baal J, van Merode F, Schaper N. High prevalence of ischaemia, infection and serious comorbidity in patients with diabetic foot disease in Europe. Baseline results from the Eurodiale study. Diabetologia. 2007;50:18–25.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Young MJ, Breddy JL, Veves A, Boulton AJ. The prediction of diabetic neuropathic foot ulceration using vibration perception thresholds. A prospective study. Diabetes Care. 1994;17:557–60.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Abbott CA, Vileikyte L, Williamson S, Carrington AL, Boulton AJ. Multicenter study of the incidence of and predictive risk factors for diabetic neuropathic foot ulceration. Diabetes Care. 1998;21:1071–5.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Abbott CA, Carrington AL, Ashe H, Bath S, Every LC, Griffiths J, Hann AW, Hussein A, Jackson N, Johnson KE, Ryder CH, Torkington R, Van Ross ER, Whalley AM, Widdows P, Williamson S, Boulton AJ, North-West Diabetes Foot Care Study. The North-West Diabetes Foot Care Study: incidence of, and risk factors for, new diabetic foot ulceration in a community-based patient cohort. Diabet Med. 2002;19:377–84.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Boulton AJM. The pathway to ulceration: aetiopathogenesis. In: Boulton AJM, Cavanagh P, Rayman G, editors. The foot in diabetes. 4th ed. Chichester: John Wiley and Sons Ltd; 2006. p. 51–67.CrossRefGoogle Scholar
  108. 108.
    Mueller MJ. Etiology, evaluation, and treatment of the neuropathic foot. Cerit Rev Phys Rehabil Med. 1992;3:289–309.Google Scholar
  109. 109.
    Kosiak M. Etiology and pathology of ischemic ulcers. Arch Phys Med Rehabil. 1959;40:62–9.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Tooke JE, Brash PD. Microvascular aspects of diabetic foot disease. Diabet Med. 1996;13(Suppl 1):S26–9.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    van Schie CHM, Boulton AJM. Biomechanics of the diabetic foot: the road to foot ulceration. In: Veves A, Giurini JM, FW LG, editors. The diabetic foot. 2nd ed. Totowa, NJ: Humana Press Inc.; 2006. p. 185–200.CrossRefGoogle Scholar
  112. 112.
    Landsman AS, Meaney DF, Cargill RS II, Macarak EJ, Thibault LE. High strain tissue deformation. A theory on the mechanical etiology of diabetic foot ulcerations. J Am Podiatr Med Assoc. 1995;85:519–27.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Sacco ICN, Hamamoto AN, Gomes AA, Onodera AN, Hirata RP, Hennig EM. Role of ankle mobility in foot rollover during gait in individuals with diabetic neuropathy. Clin Biomech. 2009;24:687–92.CrossRefGoogle Scholar
  114. 114.
    Lin SI, Chen YR, Liao CF, Chou CW. Association between sensorimotor function and forward reach in patients with diabetes. Gait Posture. 2010;32:581–5.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Fioretti S, Scocco M, Ladislao L, Ghetti G, Rabini RA. Identification of peripheral neuropathy in type-2 diabetic subjects by static posturography and linear discriminant analysis. Gait Posture. 2010;32:317–20.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Panagiotis V. Tsaklis
    • 1
    • 2
    • 3
  • Nikolaos Tentolouris
    • 2
  1. 1.Laboratory of Biomechanics and Ergonomics, Department of PhysiotherapyAlexander Technological Educational Institute of ThessalonikiThessaloníkiGreece
  2. 2.First Department of Internal Medicine, Medical SchoolNational and Kapodistrian University of Athens, Laiko General HospitalAthensGreece
  3. 3.Department of Molecular Medicine and SurgeryGrowth and Metabolism, Karolinska InstituteSolnaSweden

Personalised recommendations