Skip to main content

Structural and Functional Changes in Skin of the Diabetic Foot

  • Chapter
  • First Online:
The Diabetic Foot

Abstract

Diabetes, especially type 2, is characterized by systemic inflammation. At the skin level, there is increased infiltration by inflammatory cells and polarization of the macrophages toward the M1 inflammatory type. In addition, there is increased expression of MMP-9 and protein tyrosine phosphatase-1B (PTP1B). Other dermatologic conditions include acanthosis nigricans, characterized by a hyperpigmented, velvety, cutaneous thickening that appears predominantly in the neck, axilla, and groin areas; necrobiosis lipoidica (NL), a chronic, necrotizing, granulomatous skin disease; granuloma annulare; diabetic bullae; and diabetic dermopathy. As these conditions can be present in the lower extremity, they should be sought and easily recognized by the health care providers who manage the diabetic lower extremity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tahrani AA, Zeng W, Shakher J, Piya MK, Hughes S, Dubb K, Stevens MJ. Cutaneous structural and biochemical correlates of foot complications in high-risk diabetes. Diabetes Care. 2012;35:1913–8.

    Article  Google Scholar 

  2. Ibuki A, Akase T, Nagase T, Minematsu T, Nakagami G, Horii M, Sagara H, Komeda T, Kobayashi M, Shimada T, Aburada M, Yoshimura K, Sugama J, Sanada H. Skin fragility in obese diabetic mice: possible involvement of elevated oxidative stress and upregulation of matrix metalloproteinases. Exp Dermatol. 2012;21:178–83.

    Article  CAS  Google Scholar 

  3. Ye X, Cheng X, Liu L, Zhao D, Dang Y. Blood glucose fluctuation affects skin collagen metabolism in the diabetic mouse by inhibiting the mitogen-activated protein kinase and Smad pathways. Clin Exp Dermatol. 2013;38:530–7.

    Article  CAS  Google Scholar 

  4. Bermudez DM, Herdrich BJ, Xu J, Lind R, Beason DP, Mitchell ME, Soslowsky LJ, Liechty KW. Impaired biomechanical properties of diabetic skin implications in pathogenesis of diabetic wound complications. Am J Pathol. 2011;178:2215–23.

    Article  CAS  Google Scholar 

  5. Klinge U, Binnebosel M, Mertens PR. Are collagens the culprits in the development of incisional and inguinal hernia disease? Hernia. 2006;10:472–7.

    Article  CAS  Google Scholar 

  6. Bertheim U, Engstrom-Laurent A, Hofer PA, Hallgren P, Asplund J, Hellstrom S. Loss of hyaluronan in the basement membrane zone of the skin correlates to the degree of stiff hands in diabetic patients. Acta Derm Venereol. 2002;82:329–34.

    Article  CAS  Google Scholar 

  7. Brancato SK, Albina JE. Wound macrophages as key regulators of repair: origin, phenotype, and function. Am J Pathol. 2011;178:19–25.

    Article  CAS  Google Scholar 

  8. Lucas T, Waisman A, Ranjan R, Roes J, Krieg T, Muller W, Roers A, Eming SA. Differential roles of macrophages in diverse phases of skin repair. J Immunol. 2010;184:3964–77.

    Article  CAS  Google Scholar 

  9. Blakytny R, Jude E. The molecular biology of chronic wounds and delayed healing in diabetes. Diabet Med. 2006;23:594–608.

    Article  CAS  Google Scholar 

  10. Wood S, Jayaraman V, Huelsmann EJ, Bonish B, Burgad D, Sivaramakrishnan G, Qin S, DiPietro LA, Zloza A, Zhang C, Shafikhani SH. Pro-inflammatory chemokine CCL2 (MCP-1) promotes healing in diabetic wounds by restoring the macrophage response. PLoS One. 2014;9:e91574.

    Article  Google Scholar 

  11. Pradhan Nabzdyk L, Kuchibhotla S, Guthrie P, Chun M, Auster ME, Nabzdyk C, Deso S, Andersen N, Gnardellis C, LoGerfo FW, Veves A. Expression of neuropeptides and cytokines in a rabbit model of diabetic neuroischemic wound healing. J Vasc Surg. 2013;58:766–75. e712

    Article  Google Scholar 

  12. Leal EC, Carvalho E, Tellechea A, Kafanas A, Tecilazich F, Kearney C, Kuchibhotla S, Auster ME, Kokkotou E, Mooney DJ, LoGerfo FW, Pradhan-Nabzdyk L, Veves A. Substance P promotes wound healing in diabetes by modulating inflammation and macrophage phenotype. Am J Pathol. 2015;185:1638–48.

    Article  CAS  Google Scholar 

  13. Tellechea A, Leal EC, Kafanas A, Auster ME, Kuchibhotla S, Ostrovsky Y, Tecilazich F, Baltzis D, Zheng Y, Carvalho E, Zabolotny JM, Weng Z, Petra A, Patel A, Panagiotidou S, Pradhan-Nabzdyk L, Theoharides TC, Veves A. Mast cells regulate wound healing in diabetes. Diabetes. 2016;65:2006–19.

    Article  CAS  Google Scholar 

  14. Zykova SN, Balandina KA, Vorokhobina NV, Kuznetsova AV, Engstad R, Zykova TA. Macrophage stimulating agent soluble yeast beta-1,3/1,6-glucan as a topical treatment of diabetic foot and leg ulcers: a randomized, double blind, placebo-controlled phase II study. J Diabetes Investig. 2014;5:392–9.

    Article  CAS  Google Scholar 

  15. Mirza RE, Fang MM, Ennis WJ, Koh TJ. Blocking interleukin-1beta induces a healing-associated wound macrophage phenotype and improves healing in type 2 diabetes. Diabetes. 2013;62:2579–87.

    Article  CAS  Google Scholar 

  16. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116:1793–801.

    Article  CAS  Google Scholar 

  17. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117:175–84.

    Article  CAS  Google Scholar 

  18. Dinh T, Tecilazich F, Kafanas A, Doupis J, Gnardellis C, Leal E, Tellechea A, Pradhan L, Lyons TE, Giurini JM, Veves A. Mechanisms involved in the development and healing of diabetic foot ulceration. Diabetes. 2012;61:2937–47.

    Article  CAS  Google Scholar 

  19. Falanga V. Wound healing and its impairment in the diabetic foot. Lancet. 2005;366:1736–43.

    Article  Google Scholar 

  20. Zabolotny JM, Kim YB, Welsh LA, Kershaw EE, Neel BG, Kahn BB. Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo. J Biol Chem. 2008;283:14230–41.

    Article  CAS  Google Scholar 

  21. Tecilazich F, Dinh T, Pradhan-Nabzdyk L, Leal E, Tellechea A, Kafanas A, Gnardellis C, Magargee ML, Dejam A, Toxavidis V, Tigges JC, Carvalho E, Lyons TE, Veves A. Role of endothelial progenitor cells and inflammatory cytokines in healing of diabetic foot ulcers. PLoS One. 2013;8:e83314.

    Article  Google Scholar 

  22. Hud JA Jr, Cohen JB, Wagner JM, Cruz PD Jr. Prevalence and significance of acanthosis nigricans in an adult obese population. Arch Dermatol. 1992;128:941–4.

    Article  Google Scholar 

  23. Kuroki R, Sadamoto Y, Imamura M, Abe Y, Higuchi K, Kato K, Koga T, Furue M. Acanthosis nigricans with severe obesity, insulin resistance and hypothyroidism: improvement by diet control. Dermatology. 1999;198:164–6.

    Article  CAS  Google Scholar 

  24. Ahmed I, Goldstein B. Diabetes mellitus. Clin Dermatol. 2006;24:237–46.

    Article  Google Scholar 

  25. Tecilazich F, Kafanas A, Veves A. Cutaneous alterations in diabetes mellitus. Wounds. 2011;23:192–203.

    PubMed  Google Scholar 

  26. Ngo BT, Hayes KD, DiMiao DJ, Srinivasan SK, Huerter CJ, Rendell MS. Manifestations of cutaneous diabetic microangiopathy. Am J Clin Dermatol. 2005;6:225–37.

    Article  Google Scholar 

  27. Stanway A, Rademaker M, Newman P. Healing of severe ulcerative necrobiosis lipoidica with cyclosporin. Australas J Dermatol. 2004;45:119–22.

    Article  Google Scholar 

  28. Buggiani G, Tsampau D, Krysenka A, De Giorgi V, Hercogova J. Fractional CO2 laser: a novel therapeutic device for refractory necrobiosis lipoidica. Dermatol Ther. 2012;25:612–4.

    Article  Google Scholar 

  29. Motolese A, Vignati F, Antelmi A, Saturni V. Effectiveness of platelet-rich plasma in healing necrobiosis lipoidica diabeticorum ulcers. Clin Exp Dermatol. 2015;40:39–41.

    Article  CAS  Google Scholar 

  30. Hu SW, Bevona C, Winterfield L, Qureshi AA, Li VW. Treatment of refractory ulcerative necrobiosis lipoidica diabeticorum with infliximab: report of a case. Arch Dermatol. 2009;145:437–9.

    CAS  PubMed  Google Scholar 

  31. Suarez-Amor O, Perez-Bustillo A, Ruiz-Gonzalez I, Rodriguez-Prieto MA. Necrobiosis lipoidica therapy with biologicals: an ulcerated case responding to etanercept and a review of the literature. Dermatology. 2010;221:117–21.

    PubMed  Google Scholar 

  32. Dabski K, Winkelmann RK. Generalized granuloma annulare: clinical and laboratory findings in 100 patients. J Am Acad Dermatol. 1989;20:39–47.

    Article  CAS  Google Scholar 

  33. Levy L, Zeichner JA. Dermatologic manifestation of diabetes. J Diabetes. 2012;4:68–76.

    Article  Google Scholar 

  34. Lipsky BA, Baker PD, Ahroni JH. Diabetic bullae: 12 cases of a purportedly rare cutaneous disorder. Int J Dermatol. 2000;39:196–200.

    Article  CAS  Google Scholar 

  35. Murphy-Chutorian B, Han G, Cohen SR. Dermatologic manifestations of diabetes mellitus: a review. Endocrinol Metab Clin North Am. 2013;42:869–98.

    Article  Google Scholar 

  36. Shemer A, Bergman R, Linn S, Kantor Y, Friedman-Birnbaum R. Diabetic dermopathy and internal complications in diabetes mellitus. Int J Dermatol. 1998;37:113–5.

    Article  CAS  Google Scholar 

  37. Yosipovitch G, Hodak E, Vardi P, Shraga I, Karp M, Sprecher E, David M. The prevalence of cutaneous manifestations in IDDM patients and their association with diabetes risk factors and microvascular complications. Diabetes Care. 1998;21:506–9.

    Article  CAS  Google Scholar 

  38. Morgan AJ, Schwartz RA. Diabetic dermopathy: a subtle sign with grave implications. J Am Acad Dermatol. 2008;58:447–51.

    Article  Google Scholar 

  39. Karpouzis A, Giatromanolaki A, Sivridis E, Kouskoukis C. Acquired reactive perforating collagenosis: current status. J Dermatol. 2010;37:585–92.

    Article  Google Scholar 

  40. Faver IR, Daoud MS, Su WP. Acquired reactive perforating collagenosis. Report of six cases and review of the literature. J Am Acad Dermatol. 1994;30:575–80.

    Article  CAS  Google Scholar 

  41. Morton CA, Henderson IS, Jones MC, Lowe JG. Acquired perforating dermatosis in a British dialysis population. Br J Dermatol. 1996;135:671–7.

    Article  CAS  Google Scholar 

  42. Nebel R, Fiedler E, Danz B, Marsch WC, Kreft B. Acquired reactive perforating collagenosis associated with diabetes mellitus and renal insufficiency requiring dialysis. Dtsch Med Wochenschr. 2007;132:2624–6.

    Article  CAS  Google Scholar 

  43. Saray Y, Seckin D, Bilezikci B. Acquired perforating dermatosis: clinicopathological features in twenty-two cases. J Eur Acad Dermatol Venereol. 2006;20:679–88.

    Article  CAS  Google Scholar 

  44. Farrell AM. Acquired perforating dermatosis in renal and diabetic patients. Lancet. 1997;349:895–6.

    Article  CAS  Google Scholar 

  45. Brik R, Berant M, Vardi P. The scleroderma-like syndrome of insulin-dependent diabetes mellitus. Diabetes Metab Rev. 1991;7:120–8.

    Article  CAS  Google Scholar 

  46. Wilson BE, Newmark JJ. Severe scleredema diabeticorum and insulin resistance. J Am Board Fam Pract. 1995;8:55–7.

    CAS  PubMed  Google Scholar 

  47. Ferringer T, Miller F 3rd. Cutaneous manifestations of diabetes mellitus. Dermatol Clin. 2002;20:483–92.

    Article  Google Scholar 

  48. Cole GW, Headley J, Skowsky R. Scleredema diabeticorum: a common and distinct cutaneous manifestation of diabetes mellitus. Diabetes Care. 1983;6:189–92.

    Article  CAS  Google Scholar 

  49. Martin C, Requena L, Manrique K, Manzarbeitia FD, Rovira A. Scleredema diabeticorum in a patient with type 2 diabetes mellitus. Case Rep Endocrinol. 2011;2011:560273.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Seyger MM, van den Hoogen FH, de Mare S, van Haelst U, de Jong EM. A patient with a severe scleroedema diabeticorum, partially responding to low-dose methotrexate. Dermatology. 1999;198:177–9.

    Article  CAS  Google Scholar 

  51. Gruson LM, Franks A Jr. Scleredema and diabetic sclerodactyly. Dermatol Online J. 2005;11:3.

    PubMed  Google Scholar 

  52. Martinez DP, Diaz JO, Bobes CM. Eruptive xanthomas and acute pancreatitis in a patient with hypertriglyceridemia. Int Arch Med. 2008;1:6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aristidis Veves MD, DSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zheng, Y., Shu, B., Fu, J., Kafanas, A., Veves, A. (2018). Structural and Functional Changes in Skin of the Diabetic Foot. In: Veves, A., Giurini, J., Guzman, R. (eds) The Diabetic Foot. Contemporary Diabetes. Humana, Cham. https://doi.org/10.1007/978-3-319-89869-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89869-8_11

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-319-89868-1

  • Online ISBN: 978-3-319-89869-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics