Skip to main content

Thermoeconomic Comparative Analyses of Different Approaches Used for Specific Carbon Dioxide Emission Reduction in Gas Turbine Power Plants

  • Chapter
  • First Online:
The Role of Exergy in Energy and the Environment

Part of the book series: Green Energy and Technology ((GREEN))

  • 1020 Accesses

Abstract

Multiple reports indicate the considerable rate of growth in world’s energy demands. With the ongoing concerns about climate change and the considerable contribution of power generation industry in carbon dioxide emission, it is necessary to reduce the rate of carbon dioxide emission from power generation systems, immediately. In this chapter, three different approaches for a simple gas turbine power plant carbon dioxide emission reduction are recommended. The proposed methods include inlet air cooling with a mechanical chiller, steam bottoming cycle integration, and hybridization of power plants using heliostat field collector. Steam bottoming cycle implementation reduces the plant-specific CO2 emission by about 212–217 kgCO2/MWh (34–35%). Moreover, it is concluded that inlet air cooling technique manages to achieve improvement in both environmental and economic aspects of the plant even in a small-scale power generation system. Furthermore, hybridization is the most expensive approach considered in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Alili A, Hwang Y, Radermacher R (2014) Review of solar thermal air conditioning technologies. Int J Refrig 39:4–22

    Article  Google Scholar 

  2. Kaushik SC, Reddy VS, Tyagi SK (2011) Energy and exergy analyses of thermal power plants: a review. Renew Sust Energ Rev 15(4):1857–1872

    Article  Google Scholar 

  3. Herzog B, Jonathan P, Baumert KA (2005) Navigating the numbers- greenhouse gas data and international climate policy. United States of America, Hyacinth Billings

    Google Scholar 

  4. Sheu EJ, Mokheimer EM, Ghoniem AF (2015) Dry redox reforming hybrid power cycle: performance analysis and comparison to steam redox reforming. Int J Hydrog Energy 40(7):2939–2949

    Article  Google Scholar 

  5. Sheu EJ, Ghoniem AF (2014) Redox reforming based, integrated solar-natural gas plants: reforming and thermodynamic cycle efficiency. Int J Hydrog Energy 39(27):14817–14833

    Article  Google Scholar 

  6. Freeman J, Hellgardt K, Markides C (2015) An assessment of solar-powered organic Rankine cycle systems for combined heating and power in UK domestic applications. Appl Energy 138:605–620

    Article  Google Scholar 

  7. Freeman J, Hellgardt K, Markides C (2017) Working fluid selection and electrical performance optimisation of a domestic solar-ORC combined heat and power system for year-round operation in the UK. Appl Energy 186:291–303

    Article  Google Scholar 

  8. Zhai R, Li C, Chen Y, Yang Y, Patchigolla K, Oakey J (2016) Life cycle assessment of solar aided coal-fired power system with and without heat storage. Energy Convers Manag 111:453–465

    Article  Google Scholar 

  9. Hanak D, Biliyok C, Manovic V (2015) Efficiency improvements for the coal-fired power plant retrofit with CO 2 capture plant using chilled ammonia process. Appl Energy 151:258–272

    Article  Google Scholar 

  10. Gazzani M, Turi D, Ghoniem A, Macchi E, Manzolini G (2014) Techno-economic assessment of two novel feeding systems for a dry-feed gasifier in an IGCC plant with Pd-membranes for CO 2 capture. Int J Greenhouse Gas Control 25:62–78

    Article  Google Scholar 

  11. Kang C, Brandt A, Durlofsky LJ (2014) Optimizing heat integration in a flexible coal–natural gas power station with CO 2 capture. Int J Greenhouse Gas Control 31:138–152

    Article  Google Scholar 

  12. Lee U, Mitsos A, Han C (2016) Optimal retrofit of a CO2 capture pilot plant using superstructure and rate-based models. Int J Greenhouse Gas Control 50:57–69

    Article  Google Scholar 

  13. Tola V, Pettinau A (2014) Power generation plants with carbon capture and storage: a techno-economic comparison between coal combustion and gasification technologies. Appl Energy 113:1461–1474

    Article  Google Scholar 

  14. Singh OK (2016) Performance enhancement of combined cycle power plant using inlet air cooling by exhaust heat operated ammonia-water absorption refrigeration system. Appl Energy 180:867–879

    Article  Google Scholar 

  15. Carapellucci R, Giordano L (2015) Upgrading existing coal-fired power plants through heavy-duty and aeroderivative gas turbines. Appl Energy 156:86–98

    Article  Google Scholar 

  16. Meacock A, White A (2006) The effect of water injection on multispool gas turbine behavior. J Eng Gas Turbines Power 128(1):97–102

    Article  Google Scholar 

  17. Zhang G, Zheng J, Yang Y, Liu W (2016) A novel LNG cryogenic energy utilization method for inlet air cooling to improve the performance of combined cycle. Appl Energy 179:638–649

    Article  Google Scholar 

  18. Yang C, Yang Z, Cai R (2009) Analytical method for evaluation of gas turbine inlet air cooling in combined cycle power plant. Appl Energy 86(6):848–856

    Article  Google Scholar 

  19. Brodrick PG, Kang CA, Brandt AR, Durlofsky LJ (2015) Optimization of carbon-capture-enabled coal-gas-solar power generation. Energy 79:149–162

    Article  Google Scholar 

  20. Kang C, Brandt A, Durlofsky L (2011) Optimal operation of an integrated energy system including fossil fuel power generation, CO 2 capture and wind. Energy 36(12):6806–6820

    Article  Google Scholar 

  21. Hu Y, Li H, Yan J (2012) Techno-economic evaluation of the evaporative gas turbine cycle with different CO2 capture options. Appl Energy 89(1):303–314

    Article  Google Scholar 

  22. Wang F, Zhao J, Li H, Deng S, Yan J (2017) Preliminary experimental study of post-combustion carbon capture integrated with solar thermal collectors. Appl Energy 185:1471–1480

    Article  Google Scholar 

  23. Gunasekaran S, Mancini N, El-Khaja R, Sheu E, Mitsos A (2014) Solar–thermal hybridization of advanced zero emissions power cycle. Energy 65:152–165

    Article  Google Scholar 

  24. Poullikkas A (2005) An overview of current and future sustainable gas turbine technologies. Renew Sustain Energy Rev 9:409–443

    Article  Google Scholar 

  25. Tsujikawa Y, Sawada T (1985) Characteristics of hydrogen-fueled gas turbine cycle with intercooler, hydrogen turbine and hydrogen heater. Int J Hydrog Energy 10(10):677–683

    Article  Google Scholar 

  26. Saghafifar M, Gadalla M (2015) Innovative inlet air cooling technology for gas turbine power plants using integrated solid desiccant and Maisotsenko cooler. Energy 87:663–677

    Article  Google Scholar 

  27. Saghafifar M, Poullikkas A (2015) Thermo-economic optimization of air bottoming cycles. J Power Technol 95(3):211–220

    Google Scholar 

  28. Beretta GP, Iora P, Ghoniem AF (2013) Allocating electricity production from a hybrid fossil-renewable power plant among its multi primary resources. Energy 60:344–360

    Article  Google Scholar 

  29. Sheu E, Mitsos A, Eter A, Mokheimer E, Habib M, Al-Qutub A (2012) A review of hybrid solar–fossil fuel power generation systems and performance metrics. J Solar Energy Eng 134(4):041006

    Article  Google Scholar 

  30. Saghafifar M, Gadalla M (2016) Thermo-economic analysis of conventional combined cycle hybridization: United Arab Emirates case study. Energy Convers Manag 111:358–374

    Article  Google Scholar 

  31. Saghafifar M, Gadalla M (2016) Thermo-economic analysis of air bottoming cycle hybridization using heliostat field collector: a comparative analysis. Energy 112:698–714

    Article  Google Scholar 

  32. Saghafifar M, Gadalla M (2016) Thermo-economic evaluation of water-injected air bottoming cycles hybridization using heliostat field collector: comparative analyses. Energy 119:1230–1246

    Article  Google Scholar 

  33. Saghafifar M, Gadalla M (2017) Thermo-economic optimization of hybrid solar Maisotsenko bottoming cycles using heliostat field collector: comparative analysis. Appl Energy 190:686–702

    Article  Google Scholar 

  34. Spelling J, Laumert B, Fransson T (2014) A comparative thermoeconomic study of hybrid solar gas-turbine power plants. J Eng Gas Turbines Power 136(1):11801–11810

    Article  Google Scholar 

  35. Spelling J, Favrat D, Martin A, Augsburger G (2012) Thermoeconomic optimization of a combined-cycle solar tower power plant. Energy 41(1):113–120

    Article  Google Scholar 

  36. Turns SR (1996) An introduction to combustion, 2nd edn. McGraw-hill, New York

    Google Scholar 

  37. Kee RJ, Rupley FM, Miller JA (1990) The Chemkin thermodynamic data base. Sandia National Laboratories Report, San Diego

    Google Scholar 

  38. Burcat A (1984) Combustion chemistry. In: Thermochemical data for combustion calculations. Springer, New York, pp 455–473

    Google Scholar 

  39. Spelling J (2011) Solar gas-turbine power plants- a techno-economic evaluation. Internal Report, KTH, Stockholm

    Google Scholar 

  40. Spelling J (2013) Hybrid solar gas-turbine power plants: a thermoeconomic analysis. KTH Royal Institute of Technology, Stockholm

    Google Scholar 

  41. Gadalla M, Saghafifar M (2016) Thermo-economic and comparative analyses of two recently proposed optimization approaches for circular heliostat fields: campo radial-staggered and biomimetic spiral. Sol Energy 136:197–209

    Article  Google Scholar 

  42. Saghafifar M, Gadalla M (2016) Improvement in spiral heliostat field layout thermo-economic performance by field zoning implementation. In: ASME 2016 power and energy conference and exhibition, Charlotte North Carolina

    Google Scholar 

  43. Saghafifar M, Gadalla M (2016) Selecting a proper design period for heliostat field layout optimization using Campo code. In: SPIE optics+ photonics for sustainable energy, San Diego

    Google Scholar 

  44. Pacheco JE, Reilly HE, Gregory J, Tyner CE (2000) Summary of the solar two: test and evaluation program, SAND2000-0372C. Distributed by the Office of Scientific and Technical Information, U.S. Department of Energy, Washington, DC

    Google Scholar 

  45. Collado FJ (2009) Preliminary design of surrounding heliostat fields. Renew Energy 34(5):1359–1363

    Article  Google Scholar 

  46. Collado FJ, Guallar J (2013) A review of optimized design layouts for solar power tower plants with campo code. Renew Sust Energ Rev 20:142–154

    Article  Google Scholar 

  47. Collado FJ, Guallar J (2012) Campo: generation of regular heliostat fields. Renew Energy 46:49–59

    Article  Google Scholar 

  48. Besarati SM, Goswami DY (2014) A computationally efficient method for the design of the heliostat field for solar power tower plant. Renew Energy 69:226–232

    Article  Google Scholar 

  49. National renewable energy laboratory: typical meteorological year. [Online]. Available: http://apps1.eere.energy.gov/buildings/energyplus/weatherdata_about.cfm?CFID=856623&CFTOKEN=ee4c965b0935ba09-E3B5186A-9E62-5128-A32A2ED20A764672&jsessionid=08D708CC53F27721261D239F9C045DF8.eere. Accessed 10 5 2015

  50. Noone CJ, Torrilhon M, Mitsos A (2012) Heliostat field optimization: a new computationally efficient model and biomimetic layout. Sol Energy 86(2):792–803

    Article  Google Scholar 

  51. Sandoz R (2012) Thermoeconomic analysis and optimization of air based bottoming cycles for water free hybrid solar gas turbine power plant. Master, Department of Energy Technology, Ecole Polytechnique Federale de Lausanne, KTH, Stockholm

    Google Scholar 

  52. Farzaneh-Gord M, Deymi-Dashtebayaz M (2011) Effect of various inlet air cooling method on gas turbine performance. Energy 36:1196–1205

    Article  Google Scholar 

  53. Goldsworthy M, White S (2011) Optimisation of a desiccant cooling system design with indirect evaporative cooler. Int J Refrig 34(1):148–158

    Article  Google Scholar 

  54. Gareta R, Romeo LM, Gil A (2004) Methodology for the economic evaluation of gas turbine air cooling systems in combined cycle applications. Energy 29(11):1805–1818

    Article  Google Scholar 

  55. Peters MS, Timmerhaus KD, West RE (1968) Plant design and economics for chemical engineers. New York, McGraw-Hill

    Google Scholar 

  56. Knopf FC (2012) Modeling, analysis and optimization of process and energy systems. Wiley, Hoboken

    Google Scholar 

  57. Frangopoulos CA (1991) Intelligent functional approach; a method for analysis and optimal synthesis-design-operation of complex systems. Int J Energy Environ Econ 1(4):267–274

    Google Scholar 

  58. Pelster S (1998) Environomic modeling and optimization of advanced combined cycle cogeneration power plants including CO2 separation options, PhD dissertation, Ecole Polytechnique Federale de Lausanne, Lausanne

    Google Scholar 

  59. Turton R, Bailie RC, Whiting WB, Shaeiwitz JA (1998) Analysis, synthesis and design of chemical processes. Pearson Education, Upper Saddle River

    Google Scholar 

  60. Kistler BL (1986) A user’s manual for DELSOL3: a computer code for calculating the optical performance and optimal system design for solar thermal central receiver plants. Sandia National Labs, Livermore

    Google Scholar 

  61. Stine WB, Geyer M (1986) Solar energy systems design. Wiley, New Jersey

    Google Scholar 

  62. Schwarzbözl PBR, Sugarmen C, Ring A, Crespo MJM, Altwegg P, Enrile J (2006) Solar gas turbine systems: design, cost and perspectives. Sol Energy 80(10):1231–1240

    Article  Google Scholar 

  63. Marzouk A, Hanafi A (2013) Thermo-economic analysis of inlet air cooling in gas turbine plants. J Power Technol 93(2):90–99

    Google Scholar 

  64. Turchi CS (2010) Parabolic trough reference plant for cost modeling with the solar advisor model (SAM). National Renewable Energy Laboratory, Golden

    Book  Google Scholar 

  65. Pitz-Paal R, Dersch J, Milow B (2005) European concentrated solar thermal road-mapping (ECOSTAR). European Commission, Coordinated action sustainable energy systems SES6-CT-2003-502578, Cologne

    Google Scholar 

  66. Agency IE (2010) Projected costs of generating electricity. OECD, IEANEA, Paris

    Google Scholar 

  67. Saghafifar M, Poullikkas A (2017) Comparative analysis of power augmentation in ABC power plants. Int J Sustainable Energy 36(1):47–60

    Article  Google Scholar 

  68. Saghafifar M (2016) Thermo-economic optimization of hybrid combined power cycles using heliostat field collector. American University of Sharjah, Sharjah

    Google Scholar 

  69. Infomine, price charts 1 year natural gas prices. [Online]. Available: http://www.infomine.com/investment/metal-prices/natural-gas/1-year/. Accessed 08 06 2015

  70. Dubai GO (2015) Average dewa bills for water and electricity, Dubai electricity and water authority, 3 6 2015. [Online]. Available: http://www.dewa.gov.ae/tariff/tariffdetails.aspx. Accessed 11 6 2015

  71. Maulbetsch JS, DiFilippo MN (2006) Cost and value of water use at combined cycle power plants. California Energy Commission, Sacramento

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Saghafifar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saghafifar, M., Gadalla, M. (2018). Thermoeconomic Comparative Analyses of Different Approaches Used for Specific Carbon Dioxide Emission Reduction in Gas Turbine Power Plants. In: Nižetić, S., Papadopoulos, A. (eds) The Role of Exergy in Energy and the Environment. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-89845-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89845-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89844-5

  • Online ISBN: 978-3-319-89845-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics