Skip to main content

Parametric Optimization of Concentrated Photovoltaic-Thermoelectric Hybrid System

  • Chapter
  • First Online:
The Role of Exergy in Energy and the Environment

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The current cutting edge in photovoltaic technology states that the conversion efficiency of photovoltaic (PV) systems has inverse relation and thermoelectric systems has direct relation with temperature. Therefore, cascading of thermoelectric (TE) systems with concentrated photovoltaic (CPV) systems has the potential to improve the total power output of CPV system by effectively utilizing the solar spectrum. The excess thermal energy of the PV system can be utilized as heat input in thermoelectric system to generate power. In this chapter, a thermodynamic model based on the first and second laws of thermodynamics for concentrated photovoltaic-thermoelectric (CPV-TE) hybrid system has been developed and analysed in a MATLAB Simulink environment. Further, the parametric optimization has been carried out to improve the overall performance of the hybrid system. The effect of concentration ratio, resistance ratio, thermal resistance between the TE module and the environment and the thermal resistance between the PV and TE modules has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Makki A, Omer S, Sabir H (2015) Advancements in hybrid photovoltaic systems for enhanced solar cells performance. Renew Sust Energ Rev 41:658–684

    Article  Google Scholar 

  2. Yang D, Yin H (2011) Energy conversion efficiency of a novel hybrid solar system for photovoltaic, thermoelectric, and heat utilization. IEEE Trans Energy Convers 26(2):662–670

    Article  Google Scholar 

  3. Deng Y, Zhu W, Wang Y, Shi Y (2013) Enhanced performance of solar-driven photovoltaic–thermoelectric hybrid system in an integrated design. Sol Energy 88:182–191

    Article  Google Scholar 

  4. Zhang J, Huan Y, Yuang L (2014) Performance estimation of photovoltaic thermoelectric hybrid systems. Energy 78:895–903

    Article  Google Scholar 

  5. Ju X, Wang Z, Flamant G, Zhao W (2012) Numerical analysis and optimization of a spectrum splitting concentration photovoltaic–thermoelectric hybrid system. Sol Energy 86(6):1941–1954

    Article  Google Scholar 

  6. VanSark WGJHM (2011) Feasibility of photovoltaic–thermoelectric hybrid modules. Appl Energy 88:2785–2790

    Article  Google Scholar 

  7. Wu G, Yu X (2014) A holistic 3D finite element simulation model for thermoelectric power generator element. Energy Convers Manag 86:99–110

    Article  Google Scholar 

  8. Lin J, Liao T, Lin B (2015) Performance analysis and load matching of a photovoltaic– thermoelectric hybrid system. Energy Convers Manag 105:891–899

    Article  Google Scholar 

  9. Tian H, Sun X, Jia Q, Liang X, Shu G, Wang X (2015) Comparison and parameter optimization of a segmented thermoelectric generator by using the high temperature exhaust of a diesel engine. Energy 84:121–130

    Article  Google Scholar 

  10. Wu YY, Wu SY, Xiao L (2015) Performance analysis of photovoltaic–thermoelectric hybrid system with and without glass cover. Energy Convers Manag 93:151–159

    Article  Google Scholar 

  11. Gomez M, Reid R, Ohara B, Lee H (2013) Influence of electrical current variance and thermal resistances on optimum working conditions and geometry for thermoelectric energy harvesting. J Appl Phys 113(17):174908

    Article  Google Scholar 

  12. Najafi H, Woodbury KA (2013) Modeling and analysis of a combined photovoltaic–thermoelectric power generation system. J Sol Energy Eng 135(3):031013

    Article  Google Scholar 

  13. Evans D (1981) Simplified method for predicting photovoltaic array output. Sol Energy 27:555–560

    Article  Google Scholar 

  14. Lamba R, Kaushik SC (2016) Modeling and performance analysis of a concentrated photovoltaic–thermoelectric hybrid power generation system. Energy Convers Manag 115:288–298

    Article  Google Scholar 

  15. Lamba R, Kaushik SC (2017) Thermodynamic analysis of thermoelectric generator including influence of Thomson effect and leg geometry configuration. Energy Convers Manag 144:388–398

    Article  Google Scholar 

  16. Xuan XC, Ng KC, Yap C, Chua HT (2002) The maximum temperature difference and polar characteristic of two-stage thermoelectric coolers. Cryogenics 42(5):273–278

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix-A

Appendix-A

The temperature-dependent material properties of Bi2Te3 and the expressions for P1 through P6 and Q1 through Q6 are defined as:

s = [sp − (−sn)] = (44448.0 + 1861.2Tm − 1.9810Tm 2) × 10−9

ρn = ρp = (5112.0 + 163.4Tm + 0.6279Tm 2) × 10−10

kn = kp = (62605.0 − 277.7Tm + 0.4131Tm 2) × 10−4

μ = [μp − (−μn)] = (1861.2Tm − 3.962Tm 2) × 10−9

\( {P}_1=\frac{\alpha_{\mathrm{h}}A\left(\mathrm{FF}\right)\left[\mu \left(m+1\right)-{\alpha}_{\mathrm{h}}\left(2m+1\right)\right]{\psi}_{\mathrm{h}}}{8\left(\rho L+2{R}_{\mathrm{ec}}\right){\left(m+1\right)}^2} \)

\( {Q}_1=\frac{\alpha_{\mathrm{h}}A\left(\mathrm{FF}\right)\left[\mu \left(m+1\right)-{\alpha}_{\mathrm{h}}\right]{\psi}_{\mathrm{c}}}{8\left(\rho L+2{R}_{\mathrm{c}}\right){\left(m+1\right)}^2} \)

\( {P}_2=\frac{\alpha_cA\left(\mathrm{FF}\right)\left[\mu \left(m+1\right)+{\alpha}_{\mathrm{c}}\right]{\psi}_{\mathrm{h}}}{8\left(\rho L+2{R}_{\mathrm{ec}}\right){\left(m+1\right)}^2} \)

\( {Q}_2=\frac{\alpha_cA\left(\mathrm{FF}\right)\left[\mu \left(m+1\right)+{\alpha}_{\mathrm{c}}\left(2m+1\right)\right]{\psi}_{\mathrm{c}}}{8\left(\rho L+2{R}_{\mathrm{c}}\right){\left(m+1\right)}^2} \)

\( {P}_3=\frac{-A\left(\mathrm{FF}\right)\left[\mu \left(m+1\right)\left({\alpha}_{\mathrm{h}}+{\alpha}_{\mathrm{c}}\right)-2m{\alpha}_{\mathrm{h}}{\alpha}_{\mathrm{c}}\right]{\psi}_{\mathrm{h}}}{8\left(\rho L+2{R}_{\mathrm{ec}}\right){\left(m+1\right)}^2} \)

\( {Q}_3=\frac{-A\left(\mathrm{FF}\right)\left[\mu \left(m+1\right)\left({\alpha}_{\mathrm{h}}+{\alpha}_{\mathrm{c}}\right)+2m{\alpha}_{\mathrm{h}}{\alpha}_{\mathrm{c}}\right]{\psi}_{\mathrm{c}}}{8\left(\rho L+2{R}_c\right){\left(m+1\right)}^2} \)

\( {P}_4=\frac{-\left( kA\left(\mathrm{FF}\right){\psi}_{\mathrm{h}}+L\right)}{L} \)

\( {Q}_4=\frac{- kA\left(\mathrm{FF}\right){\psi}_{\mathrm{c}}}{L} \)

\( {P}_5=\frac{kA\left(\mathrm{FF}\right){\psi}_{\mathrm{h}}}{L} \)

\( {Q}_5=\frac{kA\left(\mathrm{FF}\right){\psi}_{\mathrm{h}}+L}{L} \)

P6 = TPV

Q6 =  − Ta

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lamba, R., Kaushik, S.C. (2018). Parametric Optimization of Concentrated Photovoltaic-Thermoelectric Hybrid System. In: Nižetić, S., Papadopoulos, A. (eds) The Role of Exergy in Energy and the Environment. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-89845-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89845-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89844-5

  • Online ISBN: 978-3-319-89845-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics