Skip to main content

Diversity of Endophytes in Tropical Forests

  • Chapter
  • First Online:
Book cover Endophytes of Forest Trees

Part of the book series: Forestry Sciences ((FOSC,volume 86))

Abstract

The world of microorganisms is vast and spectacular, as they are found everywhere in nature. Endophytic microorganisms are discovered inside healthy plant tissues and resemble the normal microbiota of the animal intestinal system. Such microbes are thought to reside inter- or intracellular in almost all types of plant tissues. Endophytes are omnipresent and exist within all known plants in various ecosystems, but the geographic differences in endophyte diversity, community composition and host/tissue preference have not been well documented yet. Endophytic microorganisms can be biotrophic mutualists, benign commensals, decomposers, or latent pathogens. Studies have found that mutualistic microbes produce toxins including several classes of alkaloids that provide resistance to herbivores. In return, plants give microbes cellular or intracellular spaces as their shelter and nutrients for their growth. Endophytes that are normally unnoticed may play a significant role in plant diversity and ecological functioning. Endophyte-infected plants reduce the correlation between diversity and eco-functioning. For example, a plant harbouring endophytes often acquires more biomass than an uninfected one and contributes less productivity in that community. Tropical ecosystems are different in important ways from those of temperate regions. They are a major reservoir of plant biodiversity and play crucial roles in global climate regulation and biogeochemical cycling. However, limited information is available about the diversity of endophytic microbial communities in these forests. Earth has forest coverage of about 31% of total land. The tropics are regions of Earth found between 23.5°N and 23.5°S of the equator. The tropical rain forest biomes cover almost 12% of Earth’s ice-free land area, of which about 20% has been brought to human concern. There are still vast areas of undisturbed rain forests that draw the highest attention of endophyte researchers. Evidence indicates that changes in climatic conditions can profoundly alter the plant-microbe symbiosis, and some conflict of interest may arise there, leading into a natural competition for individual sustainability and reproduction of endophytes. In tropical countries, diseases such as malaria, tuberculosis and cholera are prevalent. As tropical forests are considered as the most diverse terrestrial ecosystem, having the largest number of endophytic microorganisms, it also can be considered as storage for a plethora of molecules with diverse bioactivity. Limiting resources of tropical rainforests always keep the selection pressure at peak. Therefore, a high opportunity exists to obtain novel molecules with added medicinal value from endophytic microorganisms of tropical rainforests. Proper strain identification by modern molecular polyphasic approach can disclose the true diversity of the endospheric ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

N:

North

S:

South

C-endophytes:

Clavicipitaceous endophytes

NC-endophytes:

Non-clavicipatecious endophytes

References

  • Adams AE, Kazenel MR, Rudgers JA (2017) Does a foliar endophyte improve plant fitness under flooding? Plant Ecol 218:711. https://doi.org/10.1007/s11258-017-0723-0

    Article  Google Scholar 

  • Almeida TT, Orlandelli RC, Azevedo JL, Pamphile JA (2015) Molecular characterization of the endophytic fungal community associated with Eichhornia azurea (Kunth) and Eichhornia crassipes (Mart.) (Pontederiaceae) native to the Upper Paraná River floodplain. Brazil. Genet Mol Res 14:4920–4931

    Article  CAS  PubMed  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert G (2001) Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity. Mycol Res 105:1502–1507

    Article  Google Scholar 

  • Arnold AE, Herre EA (2003) Canopy cover and leaf age affect colonization by tropical fungal endophytes: Ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia 95:388–398

    Article  PubMed  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549. https://doi.org/10.1890/05-1459

    Article  PubMed  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274. https://doi.org/10.1046/j.1461-0248.2000.00159.x

    Article  Google Scholar 

  • Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashford RW (1997) What it takes to be a reservoir host. Belg J Zool 127:85–90

    Google Scholar 

  • Azevedo JL, Maccheroni JW, Pereira JO, Araújo WL (2000) Endophytic microrganisms: a review on insect control and recent advances on tropical plants. Elect J Biotechnol 3:40–65

    Google Scholar 

  • Baldassari R, Wickert E, de Goes A (2008) Pathogenicity, colony morphology and diversity of isolates of Guignardia citricarpa and G. mangiferae isolated from Citrus spp. Eur J Plant Pathol 120:103–110

    Article  Google Scholar 

  • Banerjee D (2011) Endophytic fungal diversity in tropical and subtropical plants. Res J Microbiol 6:54–62. https://doi.org/10.3923/jm.2011

    Article  Google Scholar 

  • Banerjee D, Jana M (2009) Production of exopolysaccharide by endophytic Stemphylium sp. Micología Aplicada Int 21:57–62

    Google Scholar 

  • Banerjee D, Mahapatra S, Manna S, Mukherjee R, Mukherjee S, Pati BR (2006) Occurrence of endophytic fungi in Vitexnegundo L. J Bot SocBeng 60:28–31

    Google Scholar 

  • Banerjee D, Manna S, Mahapatra S, Pati BR (2009) Fungal endophytes in three medicinal plants of Lamiaceae. Acta Microbiol et Immunol Hungarica 56:243–250

    Article  CAS  Google Scholar 

  • Banerjee D, Pandey A, Jana M, Strobel G (2014) Muscodor albus MOW12 an endophyte of Piper nigrum L. (Piperaceae) collected from North East India produces volatile antimicrobials. Ind J Microbio 54:27–32. https://doi.org/10.1007/s12088-013-0400-5

    Article  CAS  Google Scholar 

  • Bejarano NV, Carrillo L (2016) Fungal endophytes in sweet orange Citrus sinensis (L.) Osbeck in Jujuy-Argentina. Asian J Agric Food Sci 4:54–59

    Google Scholar 

  • Brundrett MC (2006) Understanding the roles of multifunctional mycorrhizal and endophytic fungi. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, Germany, pp 281–293

    Chapter  Google Scholar 

  • Carroll ID, Toovey S, Van Gompel A (2007) Dengue fever and pregnancy—A review and comment. Travel Med Infect Dis 5:183–188

    Article  PubMed  Google Scholar 

  • Chareprasert S, Piapukiew J, Thienhirun S, Whalley AJS, Sihanonth P (2006) Endophytic fungi of teak leaves Tectona grandis L. and rain tree leaves Samanea saman Merr. W J Microbiol Biotechnol 22:481–486

    Article  Google Scholar 

  • Chowdhary K, Kaushik N (2015) Fungal endophyte diversity and bioactivity in the indian medicinal plant Ocimum sanctum Linn. PLoS ONE 10:e0141444. https://doi.org/10.1371/journal.pone.0141444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clay K, Schardl CL (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127

    Article  PubMed  Google Scholar 

  • Conn VM, Franco CMM (2004) Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl Environ Microbiol 70:1787–1794. https://doi.org/10.1128/AEM.70.3.1787-1794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Costa IPMW, Maia LC, Cavalcanti MA (2012) Diversity of leaf endophytic fungi in mangrove plants of northeast Brazil. Braz J Microbiol 43:1165–1173

    Article  Google Scholar 

  • David MO, Dinerstein E, Wikramanayake ED, Burgess ND, Underwood GVN, Emma C, Jennifer AA, Illanga I et al (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bio Sci 51:933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

    Article  Google Scholar 

  • Dreyfuss MM, Chapela IH (1994) Potential of fungi in discovery of novel low molecular weight pharmaceuticals. In: Gullo VP (ed) The discovery of natural products with therapeutic potential. Butterworth-Heinemann, London, UK, pp 49–80

    Chapter  Google Scholar 

  • Dreyfuss MM, Petrini O (1984) Further investigations on the occurrence and distribution of endophytic fungi in tropical plants. Bot Helv 94:33–40

    Google Scholar 

  • Fisher PJ, Petrini LE, Sutton BC, Petrini O (1995) A study of fungal endophytes in leaves, stems and roots of GynoxisoleifoliaMuchler (Compositae) from Ecuador. Nova Hedwigia 60:589–594

    Google Scholar 

  • Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J et al (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378–381. https://doi.org/10.1038/nature10425

    Article  PubMed  CAS  Google Scholar 

  • Goebel NL, Edwards CA, Follows MJ, Zehr JP (2014) Modeled diversity effects on microbial ecosystem functions of primary production, nutrient uptake, and remineralization. Ecology 95:153–163

    Article  PubMed  Google Scholar 

  • Haffer J (1969) Speciation in amazonian forest birds. Science 165:131. https://doi.org/10.1126/science.165.3889.131

    Article  PubMed  CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914. https://doi.org/10.1139/m97-131

    Article  CAS  Google Scholar 

  • Hardoim PR, Nazir R, Sessitsch A, Elhottová D, Korenblum E, van Overbeek LS, van Elsas JD (2013) The new species Enterobacter oryziphilus sp. nov. and Enterobacter oryzendophyticus sp. nov. are key inhabitants of the endosphere of rice. BMC Microbiol 16:164

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471. https://doi.org/10.1016/j.tim.2008.07.008

    Article  PubMed  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, Ga Berg, Pirttilä AM, Compant S, Campisano A, DöringM Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol MolBiol Rev 79:293–320. https://doi.org/10.1128/MMBR.00050-14

    Article  Google Scholar 

  • Haruna E, Zin NM, Kerfahi D, Adams JM (2017) Extensive overlap of tropical rainforest bacterial endophytes between soil, plant parts, and plant species. MicrobEcol 22:1–16

    Google Scholar 

  • Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655

    Article  Google Scholar 

  • Heijden MGA, Martin FM, Selosse M, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. N Phytol 205:1406–1423. https://doi.org/10.1111/nph.13288

    Article  CAS  Google Scholar 

  • Hodgson S, Cates C, Hodgson J, Morley NJ, Sutton BC, Gange AC (2014) Vertical transmission of fungal endophytes is widespread in forbs. Ecol Evo 4:1199–1208. https://doi.org/10.1002/ece3.953

    Article  Google Scholar 

  • Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ et al (2008) Helminth infections: the great neglected tropical diseases. J Clin Invest 118:1311–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janso JE, Carter GT (2010) Biosynthetic potential of phylogenetically unique endophytic actinomycetes from tropical plants. Appl Environ Microbiol 76:4377–4386. https://doi.org/10.1128/AEM.02959-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jarvis BB, Mokhtari-Rejali N, Schenkel EP, Barros CS, Matzenbacher NI (1991) Tricothecene mycotoxins from Brazilian Baccharis species. Phytochem 30:789–797

    Article  CAS  Google Scholar 

  • Kazenel MR, Debban CL, Ranelli L, Hendricks WQ, Chung YA, Pendergast TH, Charlton ND, Young CA, Rudgers JA (2015) A mutualistic endophyte alters the niche dimensions of its host plant. AoB Plants. https://doi.org/10.1093/aobpla/plv005

    Article  PubMed  PubMed Central  Google Scholar 

  • Knoth JL, Kim SH, Ettl GJ, Doty SL (2014) Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia. N Phytol 201:599–609. https://doi.org/10.1111/nph.12536

    Article  CAS  Google Scholar 

  • Mahapatra S, Banerjee D (2009) Extracellular tannase production by endophytic Hyalopus sp. J Gen Appl Microbiol 55:255–259

    Article  CAS  PubMed  Google Scholar 

  • Mahapatra S, Banerjee D (2010) Diversity and screening for antimicrobial activity of endophytic fungi from Alstonia scholaris. Acta Microbiol et Immunol Hungarica 57:215–223

    Article  CAS  Google Scholar 

  • Mahapatra S, Banerjee D (2012) Structural elucidation and bioactivity of a novel exopolysaccharide from endophytic Fusarium solani SD5. Carbo Pol 90:683–689

    Article  CAS  Google Scholar 

  • Mahapatra S, Banerjee D (2016) Production and structural elucidation of exopolysaccharide from endophytic Pestalotiopsis sp. BC55. Int J Biol Macromol 82:182–191

    Article  CAS  PubMed  Google Scholar 

  • McKloskey M (1993) Note on the fragmentation of primary rainforest. Ambio 22:250–51

    Google Scholar 

  • Mejía LC, Herre EA, Sparks JP, Winter K, García MN, Van Bael SA, Stitt J, Shi Z, Zhang Y, Guiltinan MJ, Maximova SN (2014) Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Front Microbiol 5:479. https://doi.org/10.3389/fmicb.2014.00479

    Article  PubMed  PubMed Central  Google Scholar 

  • Miguel PSB, Delvaux JC, Oliveira MNV, Moreira BC, Borges AC, Tótola MR, Neves JCL, Costa MD (2017) Diversity and distribution of the endophytic fungal community in eucalyptus leaves. Afr J Microbiol Res 11:92–105

    Article  Google Scholar 

  • Moricca S, Ragazzi A (2011) The holomorph Apiognomonia quercina/Discuta quercina as a pathogen/endophyte in Oak. In: Pirttila AM, Frank AC (eds) Endophytes of forest trees: biology and applications, forestry sciences, vol 80. https://doi.org/10.1007/978-94-007-1599-8_3

    Chapter  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Naik BS, Shashikala J, Krishnamurthy YL (2009) Study on the diversity of endophytic communities from rice (Oryzasativa L.) and their antagonistic activities in vitro. Microbiol Res 164:290–296

    Article  CAS  PubMed  Google Scholar 

  • Nongkhlaw FMW, Joshi SR (2014) Epiphytic and endophytic bacteria that promote growth of ethnomedicinal plants in the subtropical forests of Meghalaya, India. Int J Trop Biol 62:1295–1308

    Article  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, USA, pp 179–197

    Google Scholar 

  • Petrini O, Dreyfuss MM (1981) Endophytische Pilze in epiphyischen Araceae, Bromeliaceae and Orchidaceae. Sydowia 34:135–148

    Google Scholar 

  • Qin S, Xing K, Jiang JH, Xu LH, Li WJ (2011) Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 89:457–473

    Article  CAS  PubMed  Google Scholar 

  • Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem Cycles 22:1–19

    Article  CAS  Google Scholar 

  • Rodrigues KF, Samuels GJ (1992) Idriella species endophytic in palms. Mycotaxon 43:271–276

    Google Scholar 

  • Rodrigues KF, Leuchtmann A, Petrini O (1993) Endophytic species of Xylaria/; cultural and isozymic studies. Sydowia 45:116–138

    Google Scholar 

  • Rodrigues KF, Samuels GJ (1990) Preliminary study of endophytic fungi in a tropical palm. Mycol Res 94:827–830

    Article  Google Scholar 

  • Rodrigues KF, Samuels GJ (1994) Letendraeopsis palmarum, a new genus and species of loculoascomycetes. Mycologia 86:254–258

    Article  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim YO, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2(4):404–41

    Article  PubMed  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. N Phytol 182:314–330. https://doi.org/10.1111/j.1469-8137.2009.02773.x

    Article  CAS  Google Scholar 

  • Rondón VM, González MR (2006) Hongos endófitos en plantaciones de mango “Haden” de la Planicie de Maracaibo. Rev Fac Agronomía 23:273–284

    Google Scholar 

  • Roy S, Banerjee D (2014) Distribution of endophtyicactinomycetes of three medicinal plants and evaluation of their antibacterial potencies. J Adv Microbiol 1:218–226

    Google Scholar 

  • Roy S, Yasmin S, Ghosh S, Bhattacharya S, Banerjee D (2016) Anti-infective metabolites of a newly isolated Bacillus thuringiensis KL1 associated with kalmegh (Andrographis paniculata Nees.), a traditional medicinal herb. Microbiol Insights 9:1–7. https://doi.org/10.4137/MBI.S33394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rudgers JA, Koslow JM, Clay K (2004) Endophytic fungi alter relationships between diversity and ecosystem properties. Ecol Lett 7:42–51

    Article  Google Scholar 

  • Rudgers JA, Mattingly WB, Koslow JM (2005) Mutualistic fungus promotes plant invasion into diverse communities. Oecologia 144:463

    Article  PubMed  Google Scholar 

  • Sahney S, Benton MJ, Ferry PA (2010) Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land. Biol Lett 6:544–547. https://doi.org/10.1098/rsbl.2009.1024

    Article  PubMed  PubMed Central  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: Continuum of interactions with host plants. Ann Rev Ecol Syst 29:319–343

    Article  Google Scholar 

  • Santoyoa G, Hagelsiebb GM, Ma. del Carmen Orozco-Mosquedac, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183: 92–99. doi.org/https://doi.org/10.1016/j.micres.2015.11.008

  • Seneviratne G., Weerasekara MLMAW, Kumaresan D, Zavahir JS (2017) Microbial signalling in plant- microbe interactions and its role on sustainability of agroecosystems. In: Singh JS, Seneviratne G (eds) Agro environmental sustainability, managing crop health. Springer, Switzerland, pp 1–16

    Google Scholar 

  • Sothcott KA, Johnson JA (1997) Isolation of endophytes from two species of palm from Bermuda. Can J Microbiol 43:789–792

    Article  Google Scholar 

  • Stammler G, Schutte GC, Speakman J, Miessner S, Crous PW (2013) Phyllosticta species on citrus: Risk estimation of resistance to QoI fungicides and identification of species with cytochrome b gene sequences. Crop Protection 48:6–12

    Article  CAS  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506. https://doi.org/10.1111/j.1574-6976.2000.tb00552

    Article  PubMed  CAS  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol MolBol Rev 67:491–502

    Article  CAS  Google Scholar 

  • Strobel G, Daisy B, Castillo U et al (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA (2006) Harnessing endophytes for industrial microbiology. Curr Opin Microbiol 9:240–244

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA, Miller RV, Martinez-Miller C, Condron MM, Teplow DB, Hess WM (1999) Cryptocandin a potent and antimycotic from the endophytic fungus Cryptosporiopsis cf. Quercina Microbiol 145:1919–1926

    Article  CAS  Google Scholar 

  • Stone JK (1987) Initiation and development of latent infections by Rhabdocline parkeri on Douglas-fir. Can J Bot 65:2614–2621

    Article  Google Scholar 

  • Stone JK, Bacon CW, Jr White JF (2000) An overview of endophytic microbes: edophytism defined. In: Microbial endophytes, vol. 3. M Dekker, New York, p 29

    Google Scholar 

  • Suryanarayanan TS, Murali TS, Venkatesan G (2002) Occurrence and distribution of fungal endophytes in tropical forests across a rainfall gradient. Can J Bot 80:818–826

    Article  Google Scholar 

  • Thalavaipandian A, Ramesh V, Bagyalakshmi Muthuramkumar S, Rajendran A (2011) Diversity of fungal endophytes in medicinal plants of Courtallam hills, Western Ghats, India. Mycosphere 2:575–582

    Article  Google Scholar 

  • Thongsandee W, Matsuda Y, Ito S (2012) Temporal variations in endophytic fungal assemblages of Ginkgo biloba L. J For Res 17:213–218

    Article  Google Scholar 

  • Tilman D, Lehman CL, Thomsonn KT (1997) Plant diversity and ecosystem productivity: theoretical considerations. Proc Natl Acad Sci USA 4(94):1857–1861

    Article  Google Scholar 

  • Townsend AR, Cleveland CC, Houlton BZ, Alden CB, White JWC (2011) Multi-element regulation of the tropical forest carbon cycle. Front Ecol Environ 9:9–17

    Article  Google Scholar 

  • Webber J (1981) A natural biological-control of Dutch elm disease. Nature 292:449–451

    Article  Google Scholar 

  • Zhao K, Penttinen P, Guan T et al (2011) The diversity and anti-microbial activity of endophytic actinomycetes isolated from medicinal plants in Panxi Plateau China. Curr Microbiol 62:182–190

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to UGC, New Delhi for financial assistance under innovative project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debdulal Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roy, S., Banerjee, D. (2018). Diversity of Endophytes in Tropical Forests. In: Pirttilä, A., Frank, A. (eds) Endophytes of Forest Trees. Forestry Sciences, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-89833-9_3

Download citation

Publish with us

Policies and ethics