Skip to main content

Dimensions of Host Specificity in Foliar Fungal Endophytes

  • Chapter
  • First Online:
Endophytes of Forest Trees

Part of the book series: Forestry Sciences ((FOSC,volume 86))

Abstract

Foliar fungal endophytes (FFE) colonized the phyllosphere at least 400 million years ago and have since diversified across every terrestrial ecosystem that supports plant life. Understanding how these complex symbiotic associations are generated, distributed and maintained is a challenging task that requires an understanding of host specificity. We propose a conceptual framework that outlines four ‘dimensions’ of host specificity that account for the geographic, phylogenetic or sampling scale under consideration. These ‘dimensions’ quantify FFE abundance and evenness (structural specificity), interaction strength (network specificity), evolutionary relationships (phylogenetic specificity) and the spatial or temporal consistency of the interaction (beta-specificity). We present one case study that quantifies and compares structural, network and phylogenetic specificity across FFE communities partitioned by taxonomy (Ascomycota vs. Basidiomycota). We focus on the effects of rare FFE species, approximated as Operational Taxonomic Units (OTUs), as a key methodological consideration for communities surveyed with next-generation sequencing (NGS) because the statistical nature of rarity confounds the quantification of host specificity. The exclusion of rare FFE OTUs consistently changed ecological inference by decreasing host specificity averages and increasing variances within FFE phyla. To evaluate the degree to which rare FFE OTUs affect statistical power, we compared our empirical community to that of randomized communities. Excluding rare FFE OTUs (>10% of total sequences in the case community removed) may lead to spurious host specificity metrics that are not statistically significant from that of randomized communities. Therefore, rare FFE OTU removal should be done with explicit rationale. We propose conceptualizing FFE host specificity with a multidimensional framework that will allow future studies to use quantitative, comparable and theory-driven metrics that can scale towards more meaningful estimates of global fungal biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FFE:

Foliar fungal endophytes

NGS:

Next-generation sequencing

OTU:

Operational taxonomic unit

References

  • Ahlholm JU, Helander M, Henriksson J, Metzler M, Saikkonen K (2002) Environmental conditions and host genotype direct genetic diversity of Venturia ditricha, a fungal endophyte of birch trees. Evolution 56:1566–1573

    Article  PubMed  Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Article  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549

    Article  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274

    Article  Google Scholar 

  • Bacon CW, White J (2000) Microbial endophytes. CRC Press, Boca Raton

    Google Scholar 

  • Bascompte J (2010) Structure and dynamics of ecological networks. Science 329:765–766

    Article  CAS  PubMed  Google Scholar 

  • Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Branco S, Gladieux P, Ellison CE, Kuo A, LaButti K, Lipzen A et al (2015) Genetic isolation between two recently diverged populations of a symbiotic fungus. Mol Ecol 24:2747–2758

    Article  CAS  PubMed  Google Scholar 

  • Brooks AW, Kohl KD, Brucker RM, van Opstal EJ, Bordenstein SR (2016) Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol 14:e2000225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown SP, Veach AM, Rigdon-Huss AR, Grond K, Lickteig SK, Lothamer K et al (2015) Scraping the bottom of the barrel: are rare high throughput sequences artifacts? Fungal Ecol 13:221–225

    Article  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10:421

    Article  CAS  Google Scholar 

  • Cannon PF, Simmons CM (2002) Diversity and host preference of leaf endophytic fungi in the Iwokrama Forest Reserve, Guyana. Mycologia 94:210–220

    Article  PubMed  Google Scholar 

  • Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll GC, Carroll FE (1978) Studies on the incidence of coniferous needle endophytes in the Pacific Northwest. Can J Bot 56:3034–3043

    Article  Google Scholar 

  • Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715

    Article  Google Scholar 

  • Chagnon P-L, U’Ren JM, Miadlikowska J, Lutzoni F, Arnold AE (2016) Interaction type influences ecological network structure more than local abiotic conditions: evidence from endophytic and endolichenic fungi at a continental scale. Oecologia 180:181–191

    Article  Google Scholar 

  • Davey ML, Heimdal R, Ohlson M, Kauserud H (2013) Host- and tissue-specificity of moss-associated Galerina and Mycena determined from amplicon pyrosequencing data. Fungal Ecol 6:179–186

    Article  Google Scholar 

  • Davis EC, Shaw AJ (2008) Biogeographic and phylogenetic patterns in diversity of liverwort-associated endophytes. Am J Bot 95:914–924

    Article  PubMed  Google Scholar 

  • Devictor V, Clavel J, Julliard R, Lavergne S, Mouillot D, Thuiller W et al (2010) Defining and measuring ecological specialization. J Appl Ecol 47:15–25

    Article  Google Scholar 

  • Diserud OH, Odegaard F (2007) A multiple-site similarity measure. Biol Lett 3:20–22

    Article  PubMed  Google Scholar 

  • Dormann CF (2011) How to be a specialist? Quantifying specialisation in pollination networks. Netw Biol 1:1–20

    Google Scholar 

  • Dormann CF, Gruber B, Fruend J (2008) Introducing the bipartite package: analysing ecological networks. R News 8:8–11

    Google Scholar 

  • Dormann CF, Fründ J, Blüthgen N, Gruber B (2009) Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol J 2:7–24

    Article  Google Scholar 

  • Dreyfuss MM, Chapela IH (1994) Potential of fungi in the discovery of novel, low-molecular weight pharmaceuticals. Biotechnology 26:49–80

    PubMed  CAS  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  Google Scholar 

  • Edgar RC (2016) UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing [Internet]. https://doi.org/10.1101/081257

  • Efron B (1987) Better bootstrap confidence intervals. J Am Stat Assoc 82(397):171–185

    Article  Google Scholar 

  • Faeth SH, Fagan W (2002) Fungal endophytes: common host plant symbionts but uncommon mutualists. Integr and Comp Biol 42:360–368

    Article  Google Scholar 

  • Fröhlich J, Hyde KD (1999) Biodiversity of palm fungi in the tropics: are global fungal diversity estimates realistic? Biodiv and Conserv 8:977–1004

    Article  Google Scholar 

  • Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol Syst 19:207–233

    Article  Google Scholar 

  • Gilbert GS, Reynolds DR, Bethancourt A (2007) The patchiness of epifoliar fungi in tropical forests: host range, host abundance, and environment. Ecology 88:575–581

    Article  PubMed  Google Scholar 

  • Gobet A, Quince C, Ramette A (2010) Multivariate cutoff level analysis (MultiCoLA) of large community data sets. Nucleic Acids Res 38:e155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  • Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD, Lutzoni F (2007) Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Mol Phylogenet Evol 42:543–555

    Article  CAS  PubMed  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography (MPB-32). Princeton University Press, Princeton

    Google Scholar 

  • Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome Res 17:377–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Misawa K, Kuma K-I, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD et al (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    Article  CAS  Google Scholar 

  • Kerkhoff AJ, Moriarty PE, Weiser MD (2014) The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proc Natl Acad Sci USA 111:8125–8130

    Article  CAS  PubMed  Google Scholar 

  • Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM (2014) Community assembly, coexistence and the environmental filtering metaphor. Funct Ecol 29:592–599

    Article  Google Scholar 

  • Krasnov BR, Mouillot D, Shenbrot GI, Khokhlova IS, Poulin R (2011) Beta-specificity: the turnover of host species in space and another way to measure host specificity. Int J Parasitol 41:33–41

    Article  PubMed  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecological Time Series

    Chapter  Google Scholar 

  • Liu L, Yang J, Yu Z, Wilkinson DM (2015) The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. ISME J 9:2068–2077

    Article  PubMed  PubMed Central  Google Scholar 

  • McMurdie PJ, Holmes S (2014) Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol 10:e1003531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minchin PR (1987) An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69:89–107

    Article  Google Scholar 

  • Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, Bush MB et al (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett 10:315–331

    Article  PubMed  Google Scholar 

  • Moran VC, Southwood TRE (1982) The guild composition of arthropod communities in trees. J Animal Ecol 51:289–306

    Article  Google Scholar 

  • Nguyen NH, Smith D, Peay K, Kennedy P (2014) Parsing ecological signal from noise in next generation amplicon sequencing. New Phytol 205:1389–1393

    Article  CAS  PubMed  Google Scholar 

  • Oksanen JF, Blanchet FG, Friendly M, Kindt R, Legendre P, et al (2017) Vegan: community ecology

    Google Scholar 

  • Olesen JM, Bascompte J, Dupont YL, Jordano P (2007) The modularity of pollination networks. Proc Natl Acad Sci USA 104:19891–19896

    Article  PubMed  Google Scholar 

  • Oono R, Lefèvre E, Simha A, Lutzoni F (2015) A comparison of the community diversity of foliar fungal endophytes between seedling and adult loblolly pines (Pinus taeda). Fungal Biol 119:917–928

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortiz-García S, Gernandt DS, Stone JK, Johnston PR, Chapela IH, Salas-Lizana R et al (2003) Phylogenetics of Lophodermium from pine. Mycologia 95:846–859

    Article  PubMed  Google Scholar 

  • Package. R package version 2.4-4. https://CRAN.R-project.org/package=vegan

  • Pandey AK, Reddy MS, Suryanarayanan TS (2003) ITS-RFLP and ITS sequence analysis of a foliar endophytic Phyllosticta from different tropical trees. Mycol Res 107:439–444

    Article  CAS  PubMed  Google Scholar 

  • Patin NV, Kunin V, Lidström U, Ashby MN (2013) Effects of OTU clustering and PCR artifacts on microbial diversity estimates. Microb Ecol 65:709–719

    Article  CAS  PubMed  Google Scholar 

  • Pearse WD, Purvis A (2013) phyloGenerator: an automated phylogeny generation tool for ecologists. Methods Ecol Evol 4:692–698

    Article  Google Scholar 

  • Poisot T, Bever JD, Nemri A, Thrall PH, Hochberg ME (2011) A conceptual framework for the evolution of ecological specialisation. Ecol Lett 14:841–851

    Article  PubMed  PubMed Central  Google Scholar 

  • Poisot T, Canard E, Mouquet N, Hochberg ME (2012) A comparative study of ecological specialization estimators. Methods Ecol Evol 3:537–544

    Article  Google Scholar 

  • Poulin R, Krasnov BR, Mouillot D (2011) Host specificity in phylogenetic and geographic space. Trends Parasitol 27:355–361

    Article  PubMed  Google Scholar 

  • Ricotta C, Pavoine S (2015) A multiple-site dissimilarity measure for species presence/absence data and its relationship with nestedness and turnover. Ecol Indic 54:203–206

    Article  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  Google Scholar 

  • Saavedra S, Stouffer DB, Uzzi B, Bascompte J (2011) Strong contributors to network persistence are the most vulnerable to extinction. Nature 478:233–235

    Article  CAS  PubMed  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Ann Rev Ecol Syst 29:319–343

    Article  Google Scholar 

  • Schleuning M, Fründ J, Klein A-M, Abrahamczyk S, Alarcón R, Albrecht M et al (2012) Specialization of mutualistic interaction networks decreases toward tropical latitudes. Curr Biol 22:1925–1931

    Article  CAS  PubMed  Google Scholar 

  • Schoener TW (1989) Food webs from the small to the large: The Robert H. MacArthur award lecture. Ecology 70:1559–1589

    Article  Google Scholar 

  • Shannon CE, Weaver W (1948) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Sieber TN (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 21:75–89

    Article  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stone J, Petrini O (1997) Endophytes of forest trees: a model for fungus-plant interactions. In Plant Relationships Part B. Springer, Berlin, Heidelberg

    Google Scholar 

  • Sun X, Ding Q, Hyde KD, Guo LD (2012) Community structure and preference of endophytic fungi of three woody plants in a mixed forest. Fungal Ecol 5:624–632

    Article  Google Scholar 

  • Suryanarayanan TS (2011) Diversity of fungal endophytes in tropical trees. For Sci

    Chapter  Google Scholar 

  • Swenson NG (2014) Functional and phylogenetic ecology in R. Springer, New York, NY

    Book  Google Scholar 

  • Thébault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329:853–856

    Article  CAS  PubMed  Google Scholar 

  • Toju H, Tanabe AS, Yamamoto S, Sato H (2012) High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7:e40863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • U’Ren JM, Lutzoni F, Miadlikowska J, Laetsch AD, Arnold AE (2012) Host and geographic structure of endophytic and endolichenic fungi at a continental scale. Am J Bot 99:898–914

    Article  PubMed  Google Scholar 

  • Vega FE (2008) Insect pathology and fungal endophytes. J Invertebr Pathol 98:277–279

    Article  PubMed  Google Scholar 

  • Vega FE, Simpkins A, Catherine Aime M, Posada F, Peterson SW, Rehner SA et al (2010) Fungal endophyte diversity in coffee plants from Colombia, Hawai’i, Mexico and Puerto Rico. Fungal Ecol 3:122–138

    Article  Google Scholar 

  • Vincent JB, Weiblen GD, May G (2016) Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees. Mol Ecol 25:825–841

    Article  CAS  PubMed  Google Scholar 

  • Walker DM, Castlebury LA, Rossman AY, Struwe L (2013) Host conservatism or host specialization? Patterns of fungal diversification are influenced by host plant specificity in Ophiognomonia (Gnomoniaceae: Diaporthales). Biol J Linn Soc Lond 111:1–16

    Article  Google Scholar 

  • Walter GH (1991) What is resource partitioning? J Theor Biol 150:137–143

    Article  CAS  PubMed  Google Scholar 

  • Wardhaugh CW, Edwards W, Stork NE (2015) The specialization and structure of antagonistic and mutualist networks of beetles on rainforest canopy trees. Biol J Linn Soc 114:287–295

    Article  Google Scholar 

  • Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156:145–155

    Article  Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Ann Rev Ecol Syst 33:475–505

    Article  Google Scholar 

  • Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100

    Article  CAS  PubMed  Google Scholar 

  • Weiss NA (2016) wBoot: bootstrap methods. R package version 1.0.3. https://CRAN.R-project.org/package=wBoot

  • Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213

    Article  Google Scholar 

  • Zhang T, Yao Y-F (2015) Endophytic fungal communities associated with vascular plants in the high arctic zone are highly diverse and host-plant specific. PLoS ONE 10:e0130051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Cindy Quach and Kevin Feller for their assistance in the field at the University of California, James San Jacinto Reserve. We thank Kiana Lee, Vanessa Greenman, Angelina Hyunh and Theodore Kwan for their assistance in the lab. We thank Professor Holly Moeller for reviewing previous drafts and helpful advice that improved the quality of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Austen Apigo .

Editor information

Editors and Affiliations

Appendices

Appendices

Supplementary material and reproducible code for bioinformatic processing, sequence removal and host specificity measurements can be accessed on Github at https://github.com/austenapigo.

Appendix A

Bioinformatic pipeline using USEARCH (version 9.2.64; Edgar 2010), BLAST+ (Camacho et al. 2009), MEGAN (Huson et al. 2007) and QIIME (Caporaso et al. 2010).

Appendix B

OTU tables used for structural, network and phylogenetic specificity with fungal taxonomic annotations.

Appendix C

R code for (1) sequence removal using Multivariate Cutoff Level Analysis (MultiCoLA; Gobet et al. 2010), (2) structural (vegan; Oksanen et al. 2017), network (bipartite; Dormann et al. 2008; Dormann 2011) and phylogenetic (picante; Kembel et al. 2010) specificity, and (3) randomized community analysis using the ‘nullmodel’ function (bipartite; Dormann et al. 2008) for structural and network specificity and ‘ses.mpd’ function (picante; Kembel et al. 2010) for phylogenetic specificity.

Appendix D

Host species phylogenetic tree used to calculate phylogenetic specificity in Newick format.

Appendix E

Table of p-values for Figs. 2, 3 and 6.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Apigo, A., Oono, R. (2018). Dimensions of Host Specificity in Foliar Fungal Endophytes. In: Pirttilä, A., Frank, A. (eds) Endophytes of Forest Trees. Forestry Sciences, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-89833-9_2

Download citation

Publish with us

Policies and ethics