Skip to main content

Potential of Tree Endophytes as Sources for New Drug Compounds

  • 906 Accesses

Part of the Forestry Sciences book series (FOSC,volume 86)

Abstract

The novel or designer metabolites produced by fungal endophytes are increasingly recognized by natural chemists due to their diverse structures and as candidates for drug discovery and development. Many of the metabolites belong to different classes i.e., alkaloids, benzopyranones, coumarins, chromones, cytochalasines, enniatines, isocoumarin derivatives, quinones, peptides, phenols, phenolic acids, semiquinones, steroids, terpenoids, xanthones and lactones. One of the most widely studied endophytic genera is Pestalotiopsis, from which more than 140 metabolites are reported with antimicrobial, antioxidant and antitumor activities. Here we update on the advances made on identifying bioactive metabolites with drug development potential from endophytic fungi. Furthermore, we look into the most recent innovations on improving the exploitation of endophytic fungi and their products by the pharmaceutical industry. Our main emphasis lies on the anti-infective discovery in the view of developing new drug compounds from endophytic products.

Keywords

  • Endophytic Fungi
  • Endophytic Production
  • Tejesvi
  • Pestalotiopsis Species
  • Ambuic Acid

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-89833-9_17
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-89833-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

ACE:

Angiotensin I-converting enzyme

AIDS:

Acquired Immune Deficiency Syndrome

CFME:

Cell-free metabolic engineering

DGGE:

Denaturing Gradient Gel Electrophoresis

EMEA:

European Agency for the Evaluation of Medicinal Products

FDA:

Food and Drug Administration

HI:

Human immunodeficiency

IC50:

The half maximal inhibitory concentration

MIC:

Minimum inhibitory concentration

NDM-1:

New Delhi metallo-beta-lactamase

RFLP:

Restriction Fragment Length Polymorphism

SARS:

Severe acute respiratory syndrome

TB:

Tuberculosis

References

  • Adnani N, Rajski SR, Bugni TS (2017) Symbiosis-inspired approaches to antibiotic discovery. Nat Prod Rep 34:784–814

    PubMed  CrossRef  CAS  PubMed Central  Google Scholar 

  • Aigle B, Corre C (2012) Waking up Streptomyces secondary metabolism by constitutive expression of activators or genetic disruption of repressors. Methods Enzymol 517:343–366

    PubMed  CrossRef  CAS  Google Scholar 

  • Ananda K, Sridhar KR (2002) Diversity of endophytic fungi in the roots of mangrove species on west coast of India. Can J Microbiol 48:871–878

    PubMed  CrossRef  CAS  Google Scholar 

  • Arnold AE (2008) Endophytic fungi: hidden components of tropical community ecology. In: Schnitzer S, Carson W (eds) Tropical forest community ecology. Blackwell Scientific, London

    Google Scholar 

  • Arnold AE, Meija LC, Kyllo D et al (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci 100:15649–15654

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Baayen RP, Bonants PJM, Verkley G et al (2002) Nonpathogenic isolates of the citrus black spot fungus, Guignardia citricarpa, identified as a cosmopolitan endophyte of woody plants, G. mangiferae (Phyllosticta capitalensis). Phytopathology 92:464–477

    PubMed  CrossRef  CAS  Google Scholar 

  • Bacon CW, White JF (1994) Stains, media, and procedures for analyzing endophytes. In: Bacon CW, White JF (eds) Biotechnology of endophytic fungi of grasses. CRC Press, Boca Raton

    Google Scholar 

  • Bailly J, Fraissinet-Tachet L, Verner M-C et al (2007) Soil eukaryotic functional diversity, a metatranscriptomic approach. ISME J 1:632–642

    PubMed  CrossRef  CAS  Google Scholar 

  • Balick MJ, Cox PA (1997) Plants, people and culture. The Science of Ethnobotany Scientific American Library, New York

    Google Scholar 

  • Bradley JS, Guidos R, Baragona S et al (2007) Anti-infective research and development—problems, challenges, and solutions. Lancet Infect Dis 7:68–78

    PubMed  CrossRef  Google Scholar 

  • Brem D, Leuchtmann A (2001) Epichloe grass endophytes increase herbivore resistance in the woodland grasses Brachypodium sylvaticum. Oecologia 126:522–530

    PubMed  CrossRef  CAS  Google Scholar 

  • Brown KB, Hyde KD, Guest DI (1998) Preliminary studies on endophytic fungal communities of Musa acuminata species complex in Hong Kong and Australia. Fungal Divers 1:27–51

    Google Scholar 

  • Cannon PF, Simmons CM (2002) Diversity and host preference of leaf endophytic fungi in the Iwokrama Forest Reserve, Guyana. Mycologia 94:210–220

    PubMed  CrossRef  Google Scholar 

  • Carroll G (1998) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69(1):2–9

    CrossRef  Google Scholar 

  • Chagas FO, Dias LG, Pupo MT (2013) A mixed culture of endophytic fungi increases production of antifungal polyketides. J Chem Ecol 39:1335–1342

    PubMed  CrossRef  CAS  Google Scholar 

  • Chujo T, Scott B (2014) Histone H3K9 and H3K27 methylation regulates fungal alkaloid biosynthesis in a fungal endophyte–plant symbiosis. Mol Microbiol 92:413–434

    PubMed  CrossRef  CAS  Google Scholar 

  • Chung YM, El-Shazly M et al (2013) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, induces the production of anti-inflammatory cyclodepsipeptides from Beauveria felina. J Nat Prod 76:1260–1266

    PubMed  CrossRef  CAS  Google Scholar 

  • Clay K (1998) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69:10–16

    CrossRef  Google Scholar 

  • Combès A, Ndoye I, Bance C et al (2012) Chemical communication between the endophytic fungus Paraconiothyrium variabile and the phytopathogen Fusarium oxysporum. PLoS ONE 7:e47313

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Cragg GM, Newman DJ (2009) Nature: a vital source of leads for anticancer drug development. Phytochem Rev 8:313–331

    CrossRef  CAS  Google Scholar 

  • Deng BW, Liu KH, Chen WQ et al (2009) Fusarium solani, Tax-3, a new endophytic taxol-producing fungus from Taxus chinensis. World J Microbiol Biot 25:139–143

    CrossRef  CAS  Google Scholar 

  • Deyrup ST, Swenson DC, Gloer JB et al (2006) Caryophyllene sesquiterpenoids from a fungicolous isolate of Pestalotiopsis disseminate. J Nat Prod 69:608–611

    PubMed  CrossRef  CAS  Google Scholar 

  • DiMasi JA, Feldman L, Seckler A et al (2010) Trends in risks associated with new drug development: success rates for investigational drugs. Nature 87:272–277

    CAS  Google Scholar 

  • Ding G, Li Y, Fu SB et al (2009) Ambuic acid and torreyanic acid derivatives from the endolichenic fungus Pestalotiopsis sp. J Nat Prod 72:182–186

    PubMed  CrossRef  CAS  Google Scholar 

  • Ding G, Liu SC, Guo LD et al (2008) Antifungal metabolites from the plant endophytic fungus Pestalotiopsis foedan. J Nat Prod 71:615–618

    PubMed  CrossRef  CAS  Google Scholar 

  • Dudley QM, Karim AS, Jewett MC (2015) Cell-free metabolic engineering: biomanufacturing beyond the cell. Biotechnol J 10:69–82

    PubMed  CrossRef  CAS  Google Scholar 

  • Ebrahim W, El-Neketi M, Lewald L-I et al (2016) Metabolites from the fungal endophyte Aspergillus austroafricanus in axenic culture and in fungal–bacterial nixed cultures. J Nat Prod 79:914–922

    PubMed  CrossRef  CAS  Google Scholar 

  • Engels B, Dahm P, Jennewein S (2008) Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metab Eng 10:201–206

    PubMed  CrossRef  CAS  Google Scholar 

  • Fessner WD (2015) Systems Biocatalysis: Development and engineering of cell-free “artificial metabolisms” for preparative multi-enzymatic synthesis. N Biotechnol. 32:658–664

    PubMed  CrossRef  CAS  Google Scholar 

  • Fischer J, Schroeckh V, Brakhage AA (2016) Awakening of fungal secondary metabolite gene clusters. In: Schmoll M, Dattenböck C (eds) Gene expression systems in fungi: advancements and applications. fungal biology. Springer, Heidelberg, pp 253–273

    CrossRef  Google Scholar 

  • Frohlich J, Hyde KD (1999) Biodiversity of palm fungi in the tropics: are global fungal diversity estimates realistic? Biodivers Conserv 8:977–1004

    CrossRef  Google Scholar 

  • Frohlich J, Hyde KD, Petrini O (2000) Endophytic fungi associated with palms. Mycol Res 104:1202–1212

    CrossRef  Google Scholar 

  • Fu J, Wenzel SC, Perlova O et al (2008) Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition. Nucleic Acids Res 36:e113

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Galanie S, Thodey K, Trenchard IJ, Filsinger Interrante M, Smolke CD (2015) Complete biosynthesis of opioids in yeast. Science 349:1095–1100

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Gazis R, Kuo A, Riley R et al (2016) The genome of Xylona heveae provides a window into fungal endophytism. Fungal Biol 120:26–42

    PubMed  CrossRef  CAS  Google Scholar 

  • Germida JJ, Siciliano SD, de Freitas R et al (1998) Diversity of root-associated bacteria associated with field-grown canola (Brassica napus) and wheat (Triticum aestivum). FEMS Microbiol Ecol 26:43–50

    CrossRef  CAS  Google Scholar 

  • Govaerts R (2001) How many species of seed plants are there? Taxon 50:1085–1090

    CrossRef  Google Scholar 

  • Grabley S, Sattler I (2003) Natural products for lead identification: nature is a valuable resource for providing tools. In: Hillisch A, Hilgenfeld R (eds) Modern method of drug discovery. Birkhauser verlag, Basel

    Google Scholar 

  • Grabley S, Thiericke R (1999) Bioactive agents from natural sources: trends in discovery and application. In: Scheper T (ed) Advances in biochemical engineering/biotechnology. Springer, Berlin

    Google Scholar 

  • Green D, Keller M (2006) Capturing the uncultivated majority. Curr Opin Biotechnol 17:236–240

    PubMed  CrossRef  CAS  Google Scholar 

  • Groppe K, Steinger T, Sanders I (1999) Interaction between the endophytic fungus Epichloë bromicola and the grass Bromus erectus: effects of endophyte infection, fungal concentration and environment on grass growth and flowering. Mol Ecol 8(11):1827–1835

    PubMed  CrossRef  CAS  Google Scholar 

  • Guazzaroni M-E, Silva-Rocha R, Ward RJ (2015) Synthetic biology approaches to improve biocatalyst identification in metagenomic library screening. Microbial Biotechnol 8:52–64

    CrossRef  CAS  Google Scholar 

  • Gunatilaka L (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Guo LD, Huang GR, Wang Y et al (2003) Molecular identification of endophytic fungi from Pinus tabulaeformis. Mycol Res 107:680–688

    PubMed  CrossRef  CAS  Google Scholar 

  • Guo LD, Hyde KD, Liew ECY (2000) Detection and taxonomic placement of endophytic fungi within frond tissues of Livistona chinensis based on rDNA sequences. Mol Phylogenet Evol 20:1–13

    CrossRef  CAS  Google Scholar 

  • Gutierrez-Zamora ML, Martinez-Romero E (2001) Natural endophytic association between Rhizobium and maize (Zea mays L). J Biotechnol 91(2):117–126

    PubMed  CrossRef  CAS  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Molec Biol Rev 68:669–685

    CrossRef  CAS  Google Scholar 

  • Harper JK, Arif AM, Ford EJ et al (2003) Pestacin: a 1, 3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron 59:2471–2476

    CrossRef  CAS  Google Scholar 

  • Hartley SE, Eschen R, Horwood JM et al (2015) Infection by a foliar endophyte elicits novel arabidopside-based plant defence reactions in its host, Cirsium arvense. New Phytol 205:816–827

    PubMed  CrossRef  Google Scholar 

  • Heinig U, Scholtz S, Jennewein S (2013) Getting to the bottom of Taxol biosynthesis by fungi. Fung Divers 60:161–170. https://doi.org/10.1007/s13225-013-0228-7

    CrossRef  Google Scholar 

  • Higginbotham SJ, Arnold AE, Ibañez A, Spadafora C, Coley PD, Kursar TA (2013) Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants. PLoS ONE 8:e73192

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Hoff JA, Klopfenstein NB, McDonald GI (2004) Fungal endophytes in woody roots of Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa). Forest Pathol 34:255–271

    CrossRef  Google Scholar 

  • Huang QL, Roessner CA, Croteau R, Scott AI (2001) Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorg Med Chem 9:2237–2242

    PubMed  CrossRef  CAS  Google Scholar 

  • Hugonnet JE, Tremblay LW, Boshoff HI et al (2009) Meropenem-clavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis. Science 323:1215–1218

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Imada C, Koseki N, Kamata M et al (2007) Isolation and characterization of antibacterial substances produced by marine actinomycetes in the presence of seawater. Actinomycetologica 21:27–31

    CrossRef  CAS  Google Scholar 

  • Jaber LR, Vidal S (2009) Interactions between an endophytic fungus, aphids, and extrafloral nectaries: do endophytes induce extrafloral-mediated defences in Vicia faba? Funct Ecol 23:707–714

    CrossRef  Google Scholar 

  • Jallow MFA, Dugassa-Gobena D, Vidal S (2008) Influence of an endophytic fungus on host plant selection by a polyphagous moth via volatile spectrum changes. Arthropod-Plant Interact 2:53–62

    CrossRef  Google Scholar 

  • Jennings DH, Lysek G (1996) Fungal biology: understanding the fungal lifestyle. In: Herndon VA (ed) Oxford press, Oxford, 146 p

    Google Scholar 

  • Ji Y, Bi J-N, Yan B et al (2006) Taxol-producing fungi: a new approach to industrial production of taxol Chinesenese. J Biotechnol 22:1–6

    Google Scholar 

  • Kinghorn AD (2001) Pharmacognosy in the 21st century. J Pharm Pharmacol 53:135–148

    CrossRef  CAS  Google Scholar 

  • Komatsua M, Uchiyama T, Omura S et al (2010) Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci USA 107:2646–2651

    CrossRef  Google Scholar 

  • Koskimäki JJ, Hokkanen J, Jaakola L et al (2009) Flavonoid biosynthesis and degradation play a role in early defence responses of bilberry (Vaccinium myrtillus) against biotic stress. Eur J Plant Pathol 125:629–640

    CrossRef  CAS  Google Scholar 

  • Kumar SS, Cheung HY, Lau CS et al (2004) In vitro studies of endophytic fungi from Tripterygium wilfordii with anti-proliferative activity on human peripheral blood mononuclear cells. J Ethnopharmacol 94:295–300

    CrossRef  Google Scholar 

  • Kumarasamy KK, Toleman MA, Walsh TR et al (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10:597–602

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Kumaresan V, Suryanarayanan TS (2002) Endophyte assemblages in young, mature and senescent leaves of Rhizophora apiculata: evidence for the role of endophytes in mangrove litter degradation. Fungal Divers 9:81–91

    Google Scholar 

  • Laxminarayan R, Sridhar D, Blaser M et al (2016) Achieving global targets for antimicrobial resistance. Science 353:874–875

    PubMed  CrossRef  CAS  Google Scholar 

  • Lee JC, Yang XS, Schwartz M et al (1995) The relationship between the rarest tree in North America and an endophytic fungus. Chem Biol 2:721–727

    PubMed  CrossRef  CAS  Google Scholar 

  • Li EW, Jiang LH, Guo LD et al (2008) Pestalachlorides A-C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta. Bioorg Med Chem 16:7894–7899

    PubMed  CrossRef  CAS  Google Scholar 

  • Li JY, Harper JK, Grant DM et al (2001) Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from Pestalotiopsis sp. and Monochaetia sp. Phytochemistry 56:463–468

    PubMed  CrossRef  CAS  Google Scholar 

  • Li JY, Strobel GA (2001) Jesterone and hydroxyjesterone antioomycete cyclohexenone epoxides from the endophytic fungus Pestalotiopsis jester. Phytochemistry 57:261–265

    PubMed  CrossRef  CAS  Google Scholar 

  • Liu H, Jiang H, Haltli B (2009a) Rapid cloning and heterologous expression of the meridamycin biosynthetic gene cluster using a versatile Escherichia coli-streptomyces artificial chromosome vector, pSBAC. Nat Prod 72:389–395

    CrossRef  CAS  Google Scholar 

  • Liu L, Liu S, Niu S et al (2009b) Isoprenylated chromone derivatives from the plant endophytic fungus Pestalotiopsis fici. J Nat Prod 72:1482–1486

    PubMed  CrossRef  CAS  Google Scholar 

  • Liu L, Tian RR, Liu SC et al (2009c) Pestalofones A-E, bioactive cyclohexanone derivatives from the plant endophytic fungus Pestalotiopsis fici. Bioorg Med Chem 17:606–613

    PubMed  CrossRef  CAS  Google Scholar 

  • Liu SC, Guo LD, Che YS, Liu L (2013) Pestaloficiols Q-S from the plant endophytic fungus Pestalotiopsis fici. Fitoterapia 85:114–118

    PubMed  CrossRef  CAS  Google Scholar 

  • Mwangi MM, Wu SW, Zhou Y et al (2007) Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by wholegenome sequencing. Proc Natl Acad Sci USA 104:9451–9456

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Nakamura H, Iitaka Y, Kitahara T et al (1977) Structure of aplasmomycin. J Antibiot 30:714–719

    CrossRef  CAS  Google Scholar 

  • Navarro-Meléndez AL, Heil M (2014) Symptomless endophytic fungi suppress endogenous levels of salicylic acid and interact with the jasmonate-dependent indirect defense traits of their host, Lima bean (Phaseolus lunatus). J Chem Ecol 40:816–825

    PubMed  CrossRef  CAS  Google Scholar 

  • Nützmann HW, Reyes-Dominguez Y, Scherlach K et al (2011) Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc Natl Acad Sci 108:14282–14287

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Okane I, Nagagiri A, Ito T (1998) Endophytic fungi in leaves of ericaceous plants. Can J Bot 76:657–663

    Google Scholar 

  • Ola ARB, Thomy D, Lai D et al (2013) Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis. J Nat Prod 76:2094–2099

    PubMed  CrossRef  CAS  Google Scholar 

  • Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9(3):203–214

    PubMed  CrossRef  CAS  Google Scholar 

  • Pelaez F, Collado J, Arenal F et al (1998) Endophytic fungi from plants living on gypsum soils as a source of secondary metabolites with antimicrobial activity. Mycol Res 102:755–761

    CrossRef  Google Scholar 

  • Penalva MA, Rowlands RT, Turner G (1998) The optimization of penicillin biosynthesis in fungi. Trends Biotechnol 16:483–489

    PubMed  CrossRef  CAS  Google Scholar 

  • Pendleton JN, Gorman SP, Gilmore BF (2013) Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther 11(3):297–308

    PubMed  CrossRef  CAS  Google Scholar 

  • Perlova O, Gerth K, Kuhlmann S et al (2009) Novel expression hosts for complex secondary metabolite megasynthetases: production of myxochromide in the thermopilic isolate Corallococcus macrosporus GT-2. Microb Cell Fact 8:1

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Petrini O (1986) Taxonomy of endophytic fungi in aerial plant tissues. In: Fokkoema NJ, Van den Huevel J (eds) Microbiology of the phyllosphere. Cambridge University Press, Cambridge, pp 175–187

    Google Scholar 

  • Pfeifer BA, Admiraal SJ, Gramajo H et al (2001) Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291:1790–1792

    PubMed  CrossRef  CAS  Google Scholar 

  • Photita W, Lumyong S, Lumyong P et al (2004) Are some endophytes of Musa acuminata latent pathogens? Fungal Divers 16:131–140

    Google Scholar 

  • Piepersberg W (1994) Pathway engineering in secondary metabolites-producing actinomycetes. CRC Cr Rev Biotechn 14:251–285

    CrossRef  CAS  Google Scholar 

  • Pirttilä AM, Laukkanen H, Pospiech H et al (2000) Detection of intracellular bacteria in the buds of Scotch pine (Pinus sylvestris L) by in situ hybridization. Appl Environ Microbiol 66:3073–3077

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Pirttilä AM, Pospiech H, Laukkanen H et al (2003) Two endophytic fungi in different tissues of Scots pine buds (Pinus sylvestris L). Microbial Ecol 45:53–62

    CrossRef  CAS  Google Scholar 

  • Provorov NA, Yu A, Borisov AY et al (2002) Developmental genetics and evolution of symbiotic structures in nitrogen-fixing nodules and arbuscular mycorrhiza. J Theor Biol 214:215–232

    PubMed  CrossRef  CAS  Google Scholar 

  • Ragazzi A, Moricca S, Capretti P (2001) Endophytic fungi in Quercus cerris: isolation frequency in relation to phenological phase, tree health and the organ affected. Phytopathol mediterr 40:165–171

    Google Scholar 

  • Richter SS, Heilmann KP, Dohrn CL et al (2009) Changing epidemiology of antimicrobial-resistant Streptococcus pneumoniae in the United States, 2004–2005. Clin Infect Dis 48:e23–e33

    PubMed  CrossRef  Google Scholar 

  • Ro DK, Paradise EM, Ouellet M et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    PubMed  CrossRef  CAS  Google Scholar 

  • Rodrigues KF, Samuels GJ (1999) Fungal endophytes of Spondias mombin leaves in Brazil. J Basic Microb 39:131–135

    CrossRef  Google Scholar 

  • Saikkonen K, Ahlholm J, Helander M et al (2000) Endophytic fungi in wild and cultivated grasses in Finland. Ecography 23:346–352

    CrossRef  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M et al (1998) Fungal endophytes: a continuum of interaction with host plants. Annu Rev Ecol Syst 29:319–343

    CrossRef  Google Scholar 

  • Saikkonen K, Wäli P, Helander M (2004) Evolution of endophyte-plant symbioses. Trends Plant Sci 9:275–280

    PubMed  CrossRef  CAS  Google Scholar 

  • Samuelsson G (2004) Drugs of natural origin: a textbook of pharmacognosy, 5th edn. Sweedish Pharmaceutical Press, Stockholm, p 620

    Google Scholar 

  • Schäberle TF, Hack IM (2014) Overcoming the current deadlock in antibiotic research. Trends Microbiol 22:165–167

    PubMed  CrossRef  CAS  Google Scholar 

  • Schippmann U, Leaman DJ, Cunningham AB (2002) Impact of cultivation and gathering of medicinal plants on biodiversity: global trends and issues In: (FAO) Inter departmental working group on biological diversity for food and agriculture, Rome

    Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    PubMed  CrossRef  Google Scholar 

  • Schulz B, Guske S, Dammann U et al (1998) Endophyte host interactions II. Defining symbiosis of the endophyte-host interaction. Symbiosis 25:213–227

    Google Scholar 

  • Schulz B, Sucker J, Aust HJ (1995) Biologically active secondary metabolites of endophytic Pezicula species. Mycol Res 99:1007–1015

    CrossRef  CAS  Google Scholar 

  • Schulz BU, Wanke U, Drager S et al (1993) Endophytes from herbaceous plants and shrubs: Effectiveness of surface sterilization methods. Mycol Res 97:1447–1450

    CrossRef  Google Scholar 

  • Siegel MR, Latch GCM, Johnson MC (1987) Fungal endophytes of grasses. Annu Rev Phytopathol 25:293–315

    CrossRef  Google Scholar 

  • Stierle A, Strobel GA, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae. Science 260:214–216

    PubMed  CrossRef  CAS  Google Scholar 

  • Stierle AA, Stierle DB (2005) Bioprospecting in the Berkeley pit: Bio active metabolites from acid mine waste extremophiles. Stud Nat Prod Chem 32:1123–1175

    CrossRef  CAS  Google Scholar 

  • Strobel G (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544

    PubMed  CrossRef  CAS  Google Scholar 

  • Strobel G (2007) Plant associated microorganisms (endophytes) as a new source of bioactive natural products. In: Kayser O, Quax WJ (eds) Medical plant biotechnology. Wiley –VCH Verlag, Weinheim

    Google Scholar 

  • Strobel GA (2002) Rainforest endophytes and bioactive products. Crc Cr Rev Biotechn 22:315–333

    CrossRef  CAS  Google Scholar 

  • Strobel GA, Ford E, Worapong J et al (2002) Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 60:179–183

    PubMed  CrossRef  CAS  Google Scholar 

  • Strobel GA, Hess WM, Ford E (1996a) Taxol from fungal endophytes and the issue of biodiversity. J Ind Microbiol Biot 17(5/6):417–423

    CrossRef  CAS  Google Scholar 

  • Strobel GA, Yang X, Sears J (1996b) Taxol from Pestalotiopsis microspora of Taxus wallachiana. Microbiology 142:435–440

    PubMed  CrossRef  CAS  Google Scholar 

  • Sturz A, Cristic BR, Matheson BG (1998) Associations of bacterial endophytes population from red clover and potato crops with potential for beneficial allelopathy. Can J Microbiol 44:162–167

    CrossRef  CAS  Google Scholar 

  • Suryanarayanan TS, Kumaresan V (2000) Endophytic fungi of some halophytes from an estuarine mangrove forest. Mycol Res 104:1465–1467

    CrossRef  Google Scholar 

  • Suryanarayanan TS, Kumaresan V, Johnson JA (1998) Foliar fungal endophytes from two species of the mangrove Rhizophora. Can J Microbiol 44:1003–1006

    CrossRef  CAS  Google Scholar 

  • Suryanarayanan TS, Venkatesan G, Murali TS (2003) Endophytic fungal communities in leaves of tropical forest trees: diversity and distribution patterns. Curr Sci India 85:489–493

    Google Scholar 

  • Svahn KS, Göransson U, Chryssanthou E et al (2014) Induction of gliotoxin secretion in Aspergillus fumigatus by bacteria-associated molecules. PLoS ONE 9:e93685

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    PubMed  CrossRef  CAS  Google Scholar 

  • Taylor JE, Hyde KD, Jones EBG (1999) Endophytic fungi associated with the temperate palm, Trachycarpus fortunei, within and outside its geographical range. New Phytol 142:335–346

    CrossRef  Google Scholar 

  • Tejesvi MV, Kajula M, Mattila S, Pirttilä AM (2011) Bioactivity and genetic diversity of endophytic fungi in Rhododendron tomentosum Harmaja. Fung Div 47:97–107

    CrossRef  Google Scholar 

  • Tejesvi MV, Kini KR, Prakash HS et al (2007) Genetic diversity and antifungal activity of species of Pestalotiopsis isolated as endophytes from medicinal plants. Fungal Divers 24:37–54

    Google Scholar 

  • Tejesvi MV, Mahesh B, Nalini MS et al (2005) Endophytic fungal assemblages from inner bark and twig of Terminalia arjuna W and A (Combretaceae). World J Microbiol Biot 21:1535–1540

    CrossRef  Google Scholar 

  • Tejesvi MV, Mahesh B, Nalini MS et al (2006) Fungal endophyte assemblages from ethnopharmaceutically important medicinal trees. Can J Microbiol 52:427–435

    PubMed  CrossRef  CAS  Google Scholar 

  • Tejesvi MV, Picart P, Kajula M et al (2016) Identification of antibacterial peptides from endophytic microbiome. Appl Microbiol Biotech 100:9283–9293

    CrossRef  CAS  Google Scholar 

  • Tejesvi MV, Pirttilä AM (2017) Endophytic fungi, occurrence and metabolites. In: Anke T and Schüffler A (eds) The Mycota Vol. XV: physiology and genetics, 2nd ed (in press)

    Google Scholar 

  • Tejesvi MV, Ruotsalainen AL, Markkola AM et al (2010) Root fungal endophytes along a primary succession gradient in northern Finland. Fungal Divers 41:125–134

    CrossRef  Google Scholar 

  • Tejesvi MV, Tamhankar SA, Kini KR et al (2009) Phylogenetic analysis of endophytic Pestalotiopsis species from ethnopharmaceutically important medicinal trees. Fungal Divers 38:167–183

    Google Scholar 

  • Tejesvi MV, Segura DR, Schnorr KM et al (2013) An antimicrobial peptide from endophytic Fusarium tricinctum of Rhododendron tomentosum Harmaja. Fung Div 60:153–159

    CrossRef  Google Scholar 

  • Tian Y, Amand S, Buisson D et al (2014) The fungal leaf endophyte Paraconiothyrium variabile specifically metabolizes the host- plant metabolome for its own benefit. Phytochemistry 108:95–101

    PubMed  CrossRef  CAS  Google Scholar 

  • Tomita F (2003) Endophytes in Southeast Asia and Japan: their taxonomic diversity and potential applications. Fungal Divers 14:187–204

    Google Scholar 

  • Tong Y, Charusanti P, Zhang L, Weber T, Lee SY (2015) CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol 4:1020–1029

    PubMed  CrossRef  CAS  Google Scholar 

  • Toofanee SB, Dulymamode R (2002) Fungal endophytes associated with Cordemoya integrefolia. Fungal Divers 11:169–175

    Google Scholar 

  • Uniyal SK, Singh KN, Jamwal P et al (2006) Traditional use of medicinal plants among the tribal communities of Chhota Bhangal, Western Himalaya. J Ethnobiol Ethnomed 2:1–14

    CrossRef  Google Scholar 

  • Verdine GL (1996) The combinatorial chemistry of nature. Nature 384:11–13

    PubMed  CrossRef  CAS  Google Scholar 

  • Wang X, Zhang X, Liu L, Xiang M, Wang W, Sun X, Che Y, Guo L, Liu G, Guo L, Wang C, Yin WB, Stadler M, Zhang X, Liu X (2015a) Genomic and transcriptomic analysis of the endophytic fungus Pestalotiopsis fici reveals its lifestyle and high potential for synthesis of natural products. BMC Genom 16:28

    CrossRef  CAS  Google Scholar 

  • Wang W-X, Kusari S, Sezgin S, Lamshöft M, Kusari P, Kayser O, Spiteller M (2015b) Hexacyclopeptides secreted by an endophytic fungus Fusarium solani N06 act as crosstalk molecules in Narcissus tazetta. Appl Microbiol Biotechnol 99:7651–7662

    PubMed  CrossRef  CAS  Google Scholar 

  • Watanabe K (2008) Exploring the biosynthesis of natural products and their inherent suitability for the rational design of desirable compounds through genetic engineering. Biosci Biotechnol Biochem 72:2491–2506

    PubMed  CrossRef  CAS  Google Scholar 

  • Wenzel SC, Muller R (2005) Recent developments towards the heterologous expression of complex bacterial natural product biosynthetic pathways. Curr Opin Biotechnol 16:594–606

    PubMed  CrossRef  CAS  Google Scholar 

  • Williams RB, Henrikson JC, Hoover AR et al (2008) Epigenetic remodeling of the fungal secondary metabolome. Org Biomol Chem 6:1895–1897

    PubMed  CrossRef  CAS  Google Scholar 

  • World Health Organisation (WHO) (1991) Traditional medicine and modern health care, Progress Report by the Director General, Forty Fourth World Health assembly, A44/19

    Google Scholar 

  • Xu J, Ebada SS, Proksch P (2010) Pestalotiopsis a highly creative genus: chemistry and bioactivity of secondary metabolites. Fungal Divers 44:15–31

    CrossRef  Google Scholar 

  • Xu J, Yang X, Lin Q (2014) Chemistry and biology of Pestalotiopsis-derived natural products. Fungal Divers 66:37–68

    CrossRef  Google Scholar 

  • Yang Y, Zhao H, Barrero RA et al (2014) Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Genom 15:69

    CrossRef  CAS  Google Scholar 

  • Zhang HR, Boghigian BA, Armando J et al (2011) Methods and options for the heterologous production of complex natural products. Nat Prod Rep 28:125–151

    PubMed  CrossRef  Google Scholar 

  • Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771

    PubMed  CrossRef  CAS  Google Scholar 

  • Zhao K, Ping WX, Ma X et al (2005) Breeding of highyield strain of taxol by mutagenesis of protoplast and primary discussion of genetic differences between mutants and their parent strain. Acta Microbiol Sin 45:355–358

    CAS  Google Scholar 

  • Zhou DP, Zhao K, Ping WX et al (2005) Study on the mutagensis of protoplasts from taxol-producing fungus Nodulisporium sylviforme. J Am Sci 1:55–62

    Google Scholar 

  • Zirkle R, Ligon JM, Molnar I (2004) Heterologous production of the antifungal polyketide antibiotic soraphen A of Sorangium cellulosum So ce26 in Streptomyces lividans. Microbiology 150:2761–2774

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mysore V. Tejesvi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Tejesvi, M.V., Pirttilä, A.M. (2018). Potential of Tree Endophytes as Sources for New Drug Compounds. In: Pirttilä, A., Frank, A. (eds) Endophytes of Forest Trees. Forestry Sciences, vol 86. Springer, Cham. https://doi.org/10.1007/978-3-319-89833-9_17

Download citation