Skip to main content

On the Equivalence of Eulerian and Lagrangian Variables for the Two-Component Camassa–Holm System

  • Chapter
  • First Online:
Book cover Current Research in Nonlinear Analysis

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 135))

Abstract

The Camassa–Holm equation and its two-component Camassa–Holm system generalization both experience wave breaking in finite time. To analyze this, and to obtain solutions past wave breaking, it is common to reformulate the original equation given in Eulerian coordinates, into a system of ordinary differential equations in Lagrangian coordinates. It is of considerable interest to study the stability of solutions and how this is manifested in Eulerian and Lagrangian variables. We identify criteria of convergence, such that convergence in Eulerian coordinates is equivalent to convergence in Lagrangian coordinates. In addition, we show how one can approximate global conservative solutions of the scalar Camassa–Holm equation by smooth solutions of the two-component Camassa–Holm system that do not experience wave breaking.

Dedicated to Haim Brezis and Louis Nirenberg in deep admiration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This construction resembles the one used in Step 2 of the proof of Theorem 1. However, here we perform the construction in Lagrangian variables.

  2. 2.

    Note the factors g n,ξ(ξ).

  3. 3.

    Here we denote by y # (h ) the push-forward of the measure h by y, defined by \(y_\#(h\,d\xi )(A) = \int _{y^{-1}(A)} h(\xi )d\xi \) for all Borel sets \(A \subset \mathbb {R}\).

  4. 4.

    We say that \(f_n\rightharpoonup f\) if \(\int _{\mathbb {R}} f_n(x)g(x)dx\to \int _{\mathbb {R}} f(x)g(x)dx \) for every \(g\in L^2(\mathbb {R})\).

References

  1. L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs (The Clarendon Press/Oxford University Press, New York, 2000)

    MATH  Google Scholar 

  2. A. Bressan, A. Constantin, Global conservative solutions of the Camassa–Holm equation. Arch. Ration. Mech. Anal. 183, 215–239 (2007)

    Article  MathSciNet  Google Scholar 

  3. A. Bressan, A. Constantin, Global dissipative solutions of the Camassa–Holm equation. Anal. Appl. 5, 1–27 (2007)

    Article  MathSciNet  Google Scholar 

  4. R. Camassa, D.D. Holm, An integrable shallow water equation with peaked solutions. Phys. Rev. Lett. 71(11), 1661–1664 (1993)

    Article  MathSciNet  Google Scholar 

  5. R. Camassa, D.D. Holm, J. Hyman, A new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)

    Article  Google Scholar 

  6. R.M. Chen, Y. Liu, Wave breaking and global existence for a generalized two-component Camassa–Holm system. Int. Math. Res. Not. Article ID rnq118, 36 pp. (2010)

    Google Scholar 

  7. M. Chen, S.-Q. Liu, Y. Zhang, A two-component generalization of the Camassa–Holm equation and its solutions. Lett. Math. Phys. 75, 1–15 (2006)

    Article  MathSciNet  Google Scholar 

  8. A. Constantin, J. Escher, Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    Article  MathSciNet  Google Scholar 

  9. A. Constantin, R.I. Ivanov, On an integrable two-component Camassa–Holm shallow water system. Phys. Lett. A 372, 7129–7132 (2008)

    Article  MathSciNet  Google Scholar 

  10. J. Escher, O. Lechtenfeld, Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa–Holm equation. Discrete Contin. Dyn. Syst. 19(3), 493–513 (2007)

    Article  MathSciNet  Google Scholar 

  11. G.B. Folland, Real Analysis, 2nd edn. (Wiley, New York, 1999)

    MATH  Google Scholar 

  12. Y. Fu, C. Qu, Well posedness and blow-up solution for a new coupled Camassa–Holm equations with peakons. J. Math. Phys. 50, 012906 (2009)

    Article  MathSciNet  Google Scholar 

  13. K. Grunert, Solutions of the Camassa–Holm equation with accumulating breaking times. Dyn. Partial Differ. Equ. 13, 91–105 (2016)

    Article  MathSciNet  Google Scholar 

  14. K. Grunert, H. Holden, X. Raynaud, Lipschitz metric for the periodic Camassa–Holm equation. J. Differ. Equ. 250, 1460–1492 (2011)

    Article  MathSciNet  Google Scholar 

  15. K. Grunert, H. Holden, X. Raynaud, Global conservative solutions to the Camassa–Holm equation for initial data with nonvanishing asymptotics. Discrete Cont. Dyn. Syst. Ser. A 32(12), 4209–4227 (2012)

    Article  MathSciNet  Google Scholar 

  16. K. Grunert, H. Holden, X. Raynaud, Global solutions for the two-component Camassa–Holm system. Commun. Partial Differ. Equ. 37, 2245–2271 (2012)

    Article  MathSciNet  Google Scholar 

  17. K. Grunert, H. Holden, X. Raynaud, Lipschitz metric for the Camassa–Holm equation on the line. Discrete Cont. Dyn. Syst. Ser. A 33, 2809–2827 (2013)

    Article  MathSciNet  Google Scholar 

  18. K. Grunert, H. Holden, X. Raynaud, Global dissipative solutions of the two-component Camassa–Holm system for initial data with nonvanishing asymptotics. Nonlinear Anal. Real World Appl. 17, 203–244 (2014)

    Article  MathSciNet  Google Scholar 

  19. K. Grunert, H. Holden, X. Raynaud, A continuous interpolation between conservative and dissipative solutions for the two-component Camassa–Holm system. Forum Math. Sigma 1, e1, 70 pp. (2014). https://doi.org/10.1017/fms.2014.29

  20. C. Guan, Z. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa–Holm water system. J. Differ. Equ. 248, 2003–2014 (2010)

    Article  MathSciNet  Google Scholar 

  21. C. Guan, Z. Yin, Global weak solutions for a two-component Camassa–Holm shallow water system. J. Funct. Anal. 260, 1132–1154 (2011)

    Article  MathSciNet  Google Scholar 

  22. C. Guan, K.H. Karlsen, Z. Yin, Well-posedness and blow-up phenomenal for a modified two-component Camassa–Holm equation, in Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena, ed. by H. Holden, K.H. Karlsen. Contemporary Mathematics, vol. 526 (American Mathematical Society, Providence, 2010), pp. 199–220

    Google Scholar 

  23. G. Gui, Y. Liu, On the global existence and wave breaking criteria for the two-component Camassa–Holm system. J. Funct. Anal. 258, 4251–4278 (2010)

    Article  MathSciNet  Google Scholar 

  24. G. Gui, Y. Liu, On the Cauchy problem for the two-component Camassa–Holm system. Math. Z. 268, 45–66 (2011)

    Article  MathSciNet  Google Scholar 

  25. Z. Guo, Y. Zhou, On solutions to a two-component generalized Camassa–Holm equation. Stud. Appl. Math. 124, 307–322 (2010)

    Article  MathSciNet  Google Scholar 

  26. D. Henry, Infinite propagation speed for a two component Camassa–Holm equation. Discrete Contin. Dyn. Syst. Ser. B 12(3), 597–606 (2009)

    Article  MathSciNet  Google Scholar 

  27. H. Holden, X. Raynaud, Global conservative solutions for the Camassa–Holm equation—a Lagrangian point of view. Commun. Partial Differ. Equ. 32, 1511–1549 (2007)

    Article  MathSciNet  Google Scholar 

  28. H. Holden, X. Raynaud, Global dissipative multipeakon solutions for the Camassa–Holm equation. Commun. Partial Differ. Equ. 33, 2040–2063 (2008)

    Article  MathSciNet  Google Scholar 

  29. H. Holden, X. Raynaud, Dissipative solutions for the Camassa–Holm equation. Discrete Cont. Dyn. Syst. 24, 1047–1112 (2009)

    Article  MathSciNet  Google Scholar 

  30. P.J. Olver, P. Rosenau, Tri-hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. B 53(2), 1900–1906 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Research supported in part by the Research Council of Norway projects NoPiMa and WaNP, and by the Austrian Science Fund (FWF) under Grant No. J3147. KG and HH are grateful to Institut Mittag-Leffler, Stockholm, for the generous hospitality during the fall of 2016, when part of this paper was written.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helge Holden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grasmair, M., Grunert, K., Holden, H. (2018). On the Equivalence of Eulerian and Lagrangian Variables for the Two-Component Camassa–Holm System. In: Rassias, T. (eds) Current Research in Nonlinear Analysis. Springer Optimization and Its Applications, vol 135. Springer, Cham. https://doi.org/10.1007/978-3-319-89800-1_7

Download citation

Publish with us

Policies and ethics