Skip to main content

Petrography and Diagenetic Evolution of the Proterozoic Kaimur Group Sandstones, Son Valley, India: Implication Towards Reservoir Quality

  • Chapter
  • First Online:
Book cover Geological Evolution of the Precambrian Indian Shield

Part of the book series: Society of Earth Scientists Series ((SESS))

Abstract

In Central India the Upper Kaimur Subgroup of Vindhyan Supergroup, primarily consists of three lithounits-Dhandraul Sandstone, Scarp Sandstone and Bijaigarh Shale. The framework grains, mineralogy, matrix, pore properties and cements were identified. Average framework composition of the texturally super-mature Dhandraul Sandstone is Qt99 F0.1L0.8 and texturally less mature, Scarp Sandstone is Qt99 F0.2L0.8. The important diagenetic components identified based on the framework grain–cement relationships are mechanical compaction, cements, authigenic clays and dissolution and alteration of unstable clastic grains and tectonically induced grain fracturing. The early to intermediate stage of the diagnostic realm e.g., mechanical compaction, cementation, dissolution, and authigenesis of clays (dominantly kaolinite, mixed illite-smectite and minor illite). Mixed illite-smectite and illite occur as pore-filling and or lining during authigenic phases. Kaolinite and silica (quartz) overgrowth occur as pore-filling and lining cements. Compaction played an added role than the cementation in modifying the primary porosity. Cementation drastically reduced the porosity and permeability. Kaolinite fills pore spaces and caused reduction in the porosity and permeability of the sandstone. Secondary porosity development occurred due to partial to complete dissolution of feldspar. The diagenetic signatures observed in the Upper Kaimur Subgroup Sandstones are suggestive of intermediate burial (2–3 km depth). The reservoir quality of the studied sandstones is reduced by authigenic clay minerals (kaolinite, mixed illite-smectite and minor illite), cementations, and on other hand, it is increased by alteration and dissolution of unstable grains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajdukiewicz, J. M., & Lander, R. H. (2010). Sandstone reservoir quality prediction: The state of the art. The American Association of Petroleum Geologists, 94, 1083–1091.

    Article  Google Scholar 

  • Anbarasu, K. (2001). Acritarch from Mesoproterozoic Chitrakut Formation, Semri Group, Chitrakoot area, Central India. Journal of the Geological Society of India, 57, 179–183.

    Google Scholar 

  • Auden, J. B. (1933). Vindhyan sedimentation in the Son valley, Mirzapur district. Mem. Geol. Sur. India, 62, 141–250.

    Google Scholar 

  • Banerjee, I. (1964). On some broader aspects of the Vindhyan sedimentation. In Proceedings of International Geological Congress (Vol. 15, pp. 189– 204), 22nd session, New Delhi.

    Google Scholar 

  • Banerjee, I. (1974). Barrier coastline sedimentation model and the Vindhyan example. Quarterly Journal of Geological Mining Metallurgical Society of India (Golden Jubilee), 46, 101–127.

    Google Scholar 

  • Bertier, P., Swennen, R., Largrou, D., Laenen, B., & Kemps, R. (2008). Palaeoclimate controlled diagenesis of the Westphalian C&D fluvial sandstones in the Campine Basin (north–west Belgium). Sedimentology, 55, 1375–1417.

    Article  Google Scholar 

  • Bhattacharya, A., & Morad, S. (1993). Proterozoic braided ephemeral fluvial deposits: An example from the Dhandraul Sandstone Formation of the Kaimur Group, Son Valley, Central India. Sedimentary Geology, 84, 101–114.

    Article  Google Scholar 

  • Bjørlykke, K. (1984). Formation of secondary porosity: How important is it? Clastic diagenesis. In R. Surdam & R. McDonald DA (Eds.), Association of petroleum geologists memoir (Vol. 37, pp. 77–286). The American Association of Petroleum Geologists, Tulsa, Oklahoma, Vol. 47.

    Google Scholar 

  • Bjørlykke, K., Nedkvitne, T., Ramm, M., & Saigal, G. (1992). Diagenetic processes in the Berent Group (Middle Jurassic) reservoirs of the North Sea. An overview. In A. C. Morton, R. S. Haszeldine, M. R. Giles, & S. Brown (Eds.), Geology of Brent Group (Vol. 61, pp. 263–287). Geological Society, London.

    Article  Google Scholar 

  • Boles, J. R., & Franks, S. G. (1979). Clay diagenesis in Wilcox sandstones of southwest Texas: Implications of smectite diagenesis on sandstone cementation. Journal of Sedimentary Petrology, 49, 55–70.

    Google Scholar 

  • Bose, P. K., Sarkar, S., Chakraborty, S., & Banerjee, S. (2001). Overview of Meso- to Neoproterozoie evolution of the Vindhyan basin, Central India. Sedimentary Geology, 142, 395–419.

    Article  Google Scholar 

  • Carvalho, M. V. F., De Ros, L. F., & Gomes, N. S. (1995). Carbonate cementation patterns and diagenetic reservoir facies in the Campos Basin Cretaceous turbidites, offshore eastern Brazil. Marine and Petroleum Geology, 12, 741–758.

    Article  Google Scholar 

  • Chakrabarti, R., Basu, A. R., & Chakrabarti, A. (2007). Trace element and Nd-isotopic evidence for sediment sources in the mid-Proterozoic Vindhyan Basin, central India. Precambrian Research, 159, 260–274.

    Article  Google Scholar 

  • Chakraborty, C. (1993). Morphology, internal structure and mechanics of small longitudinal (seif) dunes in an eolian horizon of the Proterozoic Dhandraul Quartzites, India. Sedimentology, 40, 79–85.

    Article  Google Scholar 

  • Chakraborty, C. (1996). Sedimentary records of erg development over a braidplain: Proterozoic Dhandraul Sandstone. Geological Society of India Memoir, 36, 77–99.

    Google Scholar 

  • Chakraborty, C., & Bose, P. K. (1992). Rhythmic shelf storm beds: Proterozoic Kaimur Formation, India. Sedimentary Geology, 77, 249–268.

    Article  Google Scholar 

  • Cozzi, A., Rea, G., & Craig, J. (2012). From global geology to hydrocarbon exploration: Pakistan and Oman Ediacaran-Early Cambrian petroleum plays of India. In G. Bhat, J. Craig, J. W. Thurow, B. Thusu, & A. Cozzi (Eds.), Geology and hydrocarbon potential of Neoproterozoic–Cambrian Basins in Asia (Vol. 366, pp. 131–162). Geological Society London, Special Publications.

    Google Scholar 

  • Dapples, E. C. (1979). Diagenesis of sandstone. In G. Larsen & G. V. Chilingarian (Eds.), Diagenesis in sediments and sedimentary rocks. Developments in sedimentology (vol. 25, pp. 31–97). The Netherlands: Elsevier.

    Google Scholar 

  • Dickinson, W. R. (1985). Interpreting provenance relations from detrital modes of sandstones. In Zuffa, G. G. (Ed.) Provenance of arenites (pp. 331–361). Dordrecht: D. Reidel.

    Chapter  Google Scholar 

  • Dickinson, W. R., Beard, L. S., Brakenride, G. R., Erjavec, J. L., Ferguson, R. C., Inman, K. F., et al. (1983). Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94, 222–235.

    Article  Google Scholar 

  • Ehrenberg, S. N. (1989). Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones: Discussion; compaction and porosity evolution of Pliocene sandstones, Ventura Basin, California: discussion. American Association of Petroleum Geologists Bulletin, 73(10), 1274–1276.

    Google Scholar 

  • El-Ghali, M. A., Tajori, K. G., & Mansurbeg, H. (2006). The influence of transgression and regression on the spatial and temporal distribution of diagenetic kaolin in the Upper Ordovician glaciogenic sandstones within a sequence stratigraphic framework, Murzuq Basin, SW Libya. Journal of Geochemical Exploration, 89, 87–91.

    Article  Google Scholar 

  • Folk, R. L. (1980). Petrology of sedimentary rocks. Texas: Hemphill Publishing Company. 184p.

    Google Scholar 

  • Galehouse, J. S. (1971). Sedimentation analysis. In R. E. Carver (Ed.), Procedures in sedimentary petrology (pp. 69–94). New York: Wiley.

    Google Scholar 

  • Giles, M. R., Stevenson, S., Martin, S. V., & Cannon, C. (1992). The reservoir properties and diagenesis of the Berent Group: A regional perspective. In A. Morton, R. Haszeldine, M. Giles, & S. Brown (Eds.). (Vol. 61, pp. 289–327). Geology of Brent Group. Geological Society of London.

    Article  Google Scholar 

  • Gopalan, K., Kumar, S., & Vijayagopala, B. (2013). Depositional history of the Upper Vindhyan succession, central India: Time constraints from Pb-Pb isochron ages of its carbonate components. Precambrian Research, 233, 108–117.

    Article  Google Scholar 

  • Hassouta, L., Buatier, M. D., Potdevin, J. L., & Liewig, N. (1999). Clay diagenesis in the sandstone reservoir of the Ellon field (Alwyn, North Sea) Clays. Clay Minerals, 47, 269–285.

    Article  Google Scholar 

  • Imam, B. (1986). Scanning electron microscopy study of the quartz overgrowths within Neogene sandstones of Bengal Basin, Bangladesh. Journal of the Geological Society of India, 28, 407–413.

    Google Scholar 

  • Imam, M. B., & Shaw, H. F. (1987). Diagenetic controls on the reservoir properties of gas bearing Neogene Surma Group sandstones in the Bengal Basin, Bangladesh. Marine and Petroleum Geology, 4, 103–110.

    Article  Google Scholar 

  • Islam, M. A. (2009). Diagenesis and reservoir quality of Bhuban sandstones (Neogene), Titas Gas Field, Bengal Basin, Bangladesh. Journal of Asian Earth Sciences, 35, 89–100.

    Article  Google Scholar 

  • Jokhan, R. (2003). Frontier basins: A major thrust area in Indian energy scenario, “new challenges in hydrocarbon research and exploration”. CSIR Diamond Jubilee Workshop III, NGRI, Hyderabad.

    Google Scholar 

  • Jokhan, R. (2012). Neoproterozoic successions in peninsular India and their hydrocarbon prospectivity. In G. Bhat, J. Craig, J. W. Thurow, B. Thusu, & A. Cozzi (Eds.), Geology and hydrocarbon potential of Neoproterozoic-Cambrian Basins in Asia (Vol. 366, pp. 59–73). Geological Society of London, Special Publications.

    Google Scholar 

  • Jokhan, R., Shukla, S. N., Pramanik, A. G., Verma, B. K., Chandra, G., & Murthy, M. S. N. (1996). Recent investigation in Vindhyan Basin: Implications for the Basin tectonics. Memoirs Geological Society of India, 36, 267–286.

    Google Scholar 

  • Khalifa, M. A., & Catuneanu, O. (2008). Sedimentology of the fluvial and fluvio-marine facies of the Bahariya Formation (Early Cenomanian), Bahariya Oasis, Western Desert, Egypt. Journal of African Earth Sciences, 51, 89–103.

    Article  Google Scholar 

  • Kumar, S. (1976). Stromatolites from the Vindhyan rocks of the Son Valley- Maihar area, districts Mirzapur (U.P.) and Satna (M.P.). Journal of the Palaeontological Society of India, 18, 13–21.

    Google Scholar 

  • Kumar, S. (1980). Stromatolites and Indian biostratigraphy: A review. Journal of the Palaeontological Society of India, 24, 166–183.

    Google Scholar 

  • Kumar, S. (1999). Siliceous sponge spicule-like forms from the Neo-Proterozoic Bhander Limestone, Maihar area, Madhya Pradesh. Journal of the Palaeontological Society of India, 44, 141–148.

    Google Scholar 

  • Kumar, S. (2001). Mesoproterozoic megafossil Chuaria-Tawuia association may represent parts of a multicellular plant, Vindhyan Supergroup, Central India. Precambrian Research, 106, 187–211.

    Article  Google Scholar 

  • Kumar, S. (2009). Controversy concerning ‘Cambrian’ fossils from the Vindhyan sediments: A re-assessment. Journal of the Palaeontological Society of India, 54, 115–117.

    Google Scholar 

  • Kumar, S., & Pandey, S. K. (2008). Arumberia and associated fossils from the Neo-Proterozoic Maihar Sandstone, Vindhyan Supergroup, Central India. Journal of the Palaeontological Society of India, 53(1), 83–97.

    Google Scholar 

  • Kumar, S., Sharma, S. D., Sreenivas, B., Dayal, A. M., Rao, M. N., Dubey, N., et al. (2002). Carbon, oxygen and strontium isotope geochemistry of Proterozoic carbonate rocks of the Vindhyan Basin, Central India. Precambrian Research, 113, 43–63.

    Article  Google Scholar 

  • Kumar, S., & Srivastava, P. (1992). Discovery of microfossils from the nonstromatolitic middle Proterozoic Vindhyan Chert, Chitrakut area, U.P. Journal Geological Society of India, 38, 511–515.

    Google Scholar 

  • Kumar, S., & Srivastava, P. (1995). Microfossils from the Kheinjua formation, Mesoproterozoic Semri group, Newari area, Central India. Precambrian Research, 74, 91–117.

    Article  Google Scholar 

  • Kumar, S., Schidlowski, M., & Joachimski, M. M. (2005). Carbon isotope stratigraphy of the Palaeo-Neoproterozoic Vindhyan Supergroup, Central India: Implications for basin evolution and intrabasinal correlation. Journal of the Palaeontological Society of India, 50(1), 65–81.

    Google Scholar 

  • Lundegard, F. D. (1992). Sandstone porosity loss a big picture view of the importance of compaction. Journal of Sedimentary Petrography, 62, 250–260.

    Article  Google Scholar 

  • Malone, S. J., Meert, J. G., Banerjee, D. M., Pandit, M. K., Tamrat, E., Kamenov, G. D., et al. (2008). Paleomagnetism and detrital zircon geochronology of the Upper Vindhyan Sequence, Son Valley and Rajasthan, India: A ca. 1000 Ma closure age for the Purana Basins? Precambrian Research, 164, 137–159.

    Article  Google Scholar 

  • Mansurbeg, H., Morad, S., Plink-Björklund, P., El-Ghali, M. A. K., Caja, M. A., & Marfil, R. (2013). Diagenetic alterations related to falling stage and lowstand systems tracts of shelf, slope and basin floor sandstones (Eocene Central Basin, Spitsbergen). In S. Morad, M. Ketzer, & L. F. De Ros (Eds.), Linking diagenesis to sequence stratigraphy (Vol. 45, pp. 353–378). International Association of Sedimentologists, Special Publications.

    Chapter  Google Scholar 

  • Mathisen, M. E. (1984). Diagenesis of plio-pleistocene non-marine sandstones, Cagayan Basin, Philippines, early development of secondary porosity in volcanic sandstones. In R. Surdam & D. A. McDonald (Eds.), Clastic diagenesis (Vol. 37, pp. 177–193). Tulsa, Oklahoma: Association of Petroleum Geologists Memoir, American Association of Petroleum Geologists.

    Google Scholar 

  • Mathur, S. M., & Srivastava, J. P. (1962). Algal structures from Fawn Limestone, Semri Series (Lower Vindhyan) in the Mirzapur district. UP Records of Geological Survey of India, 87, 819–822.

    Google Scholar 

  • McBride, E. F. (1985). Diagenetic processes that affect provenance determinations in sandstone. In G. G. Zuffa (Ed.), Provenance of arenite. Dordrecht, The Netherlands: Reidel.

    Google Scholar 

  • Meenal, M., & Shinjana, S. (2008). Geochemistry and origin of proterozoic porcellanitic shales from Chopan, Vindhyan basin, India. Indian Journal of Geology, 80(1–4), 157–171.

    Google Scholar 

  • Meenal, M., & Shinjana, S. (2010). Geochemical signatures of Mesoproterozoic siliciclastic rocks of Kaimur Group, Vindhyan Supergroup, Central India. Chinese Journal of Geochemistry, 29(1), 21–31.

    Article  Google Scholar 

  • Misra, R. C., & Awasthi, N. (1962). Sedimentary markings and other structures in the rocks of the Vindhyan Formations of the Son Valley and Maihar-Rewa area, India. Journal of Sedimentary Petrology, 32, 764–775.

    Google Scholar 

  • Misra, R. C., Singh, A. K., & Singh, I. B. (1972). Wrinkle marks from lower Rewa Formation (Upper Vindhyan) of Manikpur area, Banda district, Uttar Pradesh, India. Journal of Geological Society of India, 13, 286–288.

    Google Scholar 

  • Mondal, M. E. A., Goswami, J. N., Deomurari, M. P., & Sharma, K. K. (2002). Ionprobe 207Pb/206Pb ages of zircons from the Bundelkhand massif, northern India: Implications for crustal evolution of the Bundelkhand–Aravalli protocontinent. Precambrian Research, 117, 85–100.

    Article  Google Scholar 

  • Mondol, N. H., Bjørlykke, K., Jahren, J., & Høeg, K. (2007). Experimental mechanical compaction of clay mineral aggregates—Changes in physical properties of mudstones during burial. Marine and Petroleum Geology, 24, 289–311.

    Article  Google Scholar 

  • Morad, S., Bhattacharya, A., & Al-Aasam, L. S. (1991). Diagenesis of quartz in Late Proterozoic Kaimur Sandstones, Son Valley, India. Sedimentary Geology, 73, 209–225.

    Article  Google Scholar 

  • Morad, S., Ketzer, J. M., & De Ros, L. F. (2000). Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: Implications for mass transfer in sedimentary basins. Sedimentology, 47, 95–120.

    Article  Google Scholar 

  • Moraes, M. A. S., & De Ros, L. F. (1990). Infiltrated clays in fluvial Jurassic sandstones of Recôncavo Basin, Northeastern Brazil. Journal of Sedimentary Petrology, 60, 809–819.

    Google Scholar 

  • Oelkers, E. H., Bjørkum, P. A., & Murphy, W. M. (1996). The mechanism of porosity reduction, stylolites development and quartz cementation in North Sea sandstones. In Y. K. Kharaka & A. S. Maest (Eds.), Proceedings of 7th International Symposium on Water-Rock Interaction, pp. 1183–1186.

    Google Scholar 

  • Paikaray, S., Banerjee, S., & Mukherji, S. (2008). Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup, implications on provenance, tectonics and paleoweathering. Journal of Asian Earth Sciences, 32, 34–48.

    Article  Google Scholar 

  • Paxton, S. T., Szabo, J. O., Ajdukiewicz, J. M., & Klimentidis, R. E. (2002). Construction of an intergranular volume compaction curve for evaluating and predicting compaction and porosity loss in rigid-grain sandstone reservoirs. American Association of Petroleum Geologists Bulletin, 86, 2047–2067.

    Google Scholar 

  • Pittman, E. D., & Larese, R. E. (1991). Compaction of lithic sands: Experimental results and applications. American Association of Petroleum Geologists Bulletin, 75, 1279–1299.

    Google Scholar 

  • Prakash, R., & Dalela, I. K. (1982). Stratigraphy of the Vindhyan in Uttar Pradesh: A brief review. Lucknow: U. P. State Mineral Development Corporation.

    Google Scholar 

  • Quasim, M. A., Ahmad, A. H. M. & Ghosh, S. K. (2017a). Depositional environment and tectono-provenance of Upper Kaimur Group sandstones, Son Valley, Central India. Arabian Journal of Geosciences, 10(4). https://doi.org/10.1007/s12517-016-2783-1.

  • Quasim, M. A., Khan, I. and Ahmad, A. H. M. (2017b). Integrated Petrographic, Mineralogical, and Geochemical Study of the Upper Kaimur Group of Rocks, Son Valley, India: Implications for Provenance, Source Area Weathering and Tectonic Setting. Journal of Geological Society of India, 90, 467–484.

    Article  Google Scholar 

  • Raha, P. K., & Sastry, M. V. A. (1982). Stromatolites and Precambrian stratigraphy in India. Precambrian Research, 18, 293–318.

    Article  Google Scholar 

  • Ray, J. S. (2006). Age of the Vindhyan Supergroup: A review of recent findings. Journal of Earth System Science, 115, 149–160.

    Article  Google Scholar 

  • Rossi, C., & Alaminos, A. (2014). Evaluating the mechanical compaction of quartz arenites: The importance of sorting (Llanos foreland basin, Colombia). Marine and Petroleum Geology, 56, 222–238.

    Article  Google Scholar 

  • Roy, A. B. (1988). Stratigraphic and tectonic framework of the Aravalli Mountain range. In A. B. Roy (Ed.), Precambrian of the Aravalli Mountain (pp. 3–31). Memoirs Geological Society of India: Rajasthan, India.

    Google Scholar 

  • Ruppel, S. C., & Hovorka, S. D. (1995). Controls on reservoir development in Devonian Chert: Permian Basin, Texas. American Association of Petroleum Geologists Bulletin, 79(12), 1757–1785.

    Google Scholar 

  • Sarkar, S. (1981). Ripple marks in intertidal Lower Bhander sandstone (Late Proterozoic), Central India: A morphological analysis. Sedimentary Geology, 29, 241–282.

    Article  Google Scholar 

  • Sastry, M. V. A., & Moitra, A. K. (1984). Vindhyan stratigraphy—A review. Memoirs of the Geological Survey of India, 116, 109–148.

    Google Scholar 

  • Schmidt, V., & McDonald, D. A. (1979). Texture and recognition of secondary porosity in sandstones. In P. A. Scholle & P. R. Schluger (Eds.), Aspects of diagenesis (Vol. 26, pp. 209–225). Society of Economic Paleontologists and Mineralogists, Special Publications.

    Chapter  Google Scholar 

  • Seibert, R. M., Moncure, G. K., & Lahann, R. W. (1984). A theory of framework grain dissolution in sandstones. In R. Surdam & D. A. McDonald (Eds.), Clastic diagenesis (Vol. 37, pp. 136–175). Tulsa, Oklahoma: Association of Petroleum Geologists Memoir, American Association of Petroleum Geologists.

    Google Scholar 

  • Singh, I. B. (1973). Depositional environment of the Vindhyan sediments in Son Valley area. Recent Research in Geology, 1, 146–152.

    Google Scholar 

  • Singh, I. B. (1976). Depositional environments of the Upper Vindhyan sediments in the Satna-Maihar area, Madhya Pradesh, and its bearing on the evolution of the Vindhyan sedimentary basins. Journal of the Palaeontological Society of India, 19, 48–70.

    Google Scholar 

  • Smosna, R. (1989). Compaction law for Cretaceous sandstones of Alaska’s North slope. Journal of Sedimentary Petrology, 59, 572–584.

    Google Scholar 

  • Smosna, R., & Bruner, K. (1997). Depositional controls over porosity development in lithic sandstones of the Appalachian Basin: Reducing exploration risk. In J. A. Kupecz, J. Gluyas, & S. Bloch (Eds.), Reservoir quality prediction in sandstones and carbonates (Vol. 69, pp. 249–265). The American Association of Petroleum Geologists Memoirs.

    Google Scholar 

  • Soni, M. K., Chakraborty, S., & Jain, S. K. (1987). Vindhyan supergroup—A review. In Purana basins of India. Journal of the Geological Society of India, 6, 87–138.

    Google Scholar 

  • Surdam, R. C., Boese, S. W., & Crossey, L. J. (1984). The chemistry of the secondary porosity. In R. Surdam & D. A. McDonald (Eds.), Clastic diagenesis (Vol. 37, pp. 127–149). Tulsa, Oklahoma: Association of Petroleum Geologists Memoir, The American Association of Petroleum Geologists Memoirs.

    Google Scholar 

  • Taylor, J. M. (1950). Pore space reduction in sandstone. American Association of Petroleum Geologists Bulletin, 34, 710–716.

    Google Scholar 

  • Taylor, T. R., Giles, M. R., Hathon, L. A., Diggs, T. N., Braunsdorf, N. R., Birbiglia, G. V., et al. (2010). Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality. American Association of Petroleum Geologists Bulletin, 94, 1093–1132.

    Article  Google Scholar 

  • Tucker, M. E. (2003). Sedimentary petrology (3rd ed.). London: Blackwell Scientific Publication Ltd. 262p.

    Google Scholar 

  • Valdiya, K. S. (1989). Precambrian stromatolite biostratigraphy of India—A review. Himalayan Geology, 13, 181–214.

    Google Scholar 

  • Vardhan, C. V., Paniker, S. K., & Kumar, B. (2007). Comparison of Proterozoic basins of India with similar basins of the world: Implications for hydrocarbon resource prospects. In D. Liang, D. Wang, & Z. Li (Eds.), Petroleum geochemistry and exploration in the Afro-Asian Region (pp. 69–74). London: Taylor and Francis Group.

    Google Scholar 

  • Verma, R. K. (1991). Geodynamics of the Indian Peninsula and the Indian Plate Margin. Oxford: IBH. 357p.

    Google Scholar 

  • Worden, R., & Morad, S. (2000). Quartz cement in oil field sandstones: A review of the critical problems. In R. H. Worden & S. Morad (Eds.), Quartz cementation in sandstones (Vol. 29, pp. 1–20). International Association of Sedimentologists, Special Publication.

    Google Scholar 

  • Worden, R. H., & Burley, S. (2003). Sandstone diagenesis: The evolution of sand to stone. In S. Burley & R. Worden (Eds.), Sandstone diagenesis: Recent to ancient (Vol. 4, pp. 3–44). International Association of Sedimentologists, Reprint Series.

    Google Scholar 

  • Worden, R. H., & Morad, S. (2003). Clay minerals in sandstones: Controls on formation, distribution and evolution. In R. H. Worden & S. Morad (Eds.), Clay minerals cement in sandstones (Vol. 34, pp. 3–41). International Association of Sedimentologists Special Publication.

    Google Scholar 

  • Worden, R. H., Myall, M. & Evans, I. J. (2000). The effect of ductile-lithic sand grains and quartz cement on porosity and permeability in Oligocene and Miocene clastics, south China Sea: prediction of reservoir quality. American Association of Petroleum Geologists Bulletin, 84, 345–359.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the Chairman, Department of Geology, Aligarh Muslim University, Aligarh for providing the necessary research facilities. The financial assistance received by the first author in the form of Junior Research Fellowship from the University under University Grant Commission, BSR fellowship scheme, New Delhi is acknowledged. We are grateful to Dr. Shahid Husain (Department of Physics, AMU, Aligarh) for giving permission for XRD analysis. We thank to the Director of USIF, AMU, Aligarh, for supporting SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Quasim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quasim, M.A., Ghosh, S.K., Ahmad, A.H.M. (2019). Petrography and Diagenetic Evolution of the Proterozoic Kaimur Group Sandstones, Son Valley, India: Implication Towards Reservoir Quality. In: Mondal, M. (eds) Geological Evolution of the Precambrian Indian Shield. Society of Earth Scientists Series. Springer, Cham. https://doi.org/10.1007/978-3-319-89698-4_20

Download citation

Publish with us

Policies and ethics