Skip to main content

Provenance and Tectonic Setting of the Proterozoic Clastic Rocks of the Kerur Formation, Badami Group, Mohare Area, Karnataka, India

  • Chapter
  • First Online:
Geological Evolution of the Precambrian Indian Shield

Abstract

The clastic rocks of the Kerur Formation Group were analyzed for major, trace and rare earth elements to infer the tectonic settings and provenance signatures. The lithology of the Kerur Formation includes basal arenite (BA), lower conglomerate (LC), quartz arenite (QA) and upper conglomerate (UC). The CIA and PIA values and A–CN–K diagram indicate a moderate to intense chemical weathering for the clastic rocks of the Kerur Formation. The bivariate plot and multidimensional diagram based on major-trace elements suggesting the clastic rocks were derived mainly from the passive margin setting. A silicic source for clastic rocks of the Kerur Formation is indicated by higher ratios of SiO2/Al2O3, ΣLREE/ΣHREE, elemental ratios, bivariate and ternary plots. REE patterns and Eu anomalies support that TTG (Tonalite-Trondhjemite gneiss), granodiorite, granitic rocks of the Dharwar Craton and the basement rock (schist) of the Kaladgi-Badami Basin could be the source rocks for the Kerur Formation. REE modeling suggests that the average composition of the Kerur Formation represents a mixture of sediments derived from a provenance consisting of 40% TTG, 30% granite, 20% granodiorite and 10% schist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal, S., & Verma, S. P. (2007). Comment on “Tectonic classification of basalts with classification trees” by Pieter Vermeesch (2006). Geochimica et Cosmochimica Acta, 71, 3388–3390.

    Article  Google Scholar 

  • Allen, P. (1985). The geochemistry of the Amphibolite-Granulite facies transition in Central South India (Unpublished Ph.D. thesis). New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA.

    Google Scholar 

  • Armstrong-Altrin, J. S., & Machain-Castillo, M. L. (2016). Mineralogy, geochemistry, and radiocarbon ages of deep sea sediments from the Gulf of Mexico, Mexico. Journal of South American Earth Sciences, 71, 182–200.

    Article  Google Scholar 

  • Armstrong-Altrin, J. S., Nagarajan, R., Balaram, V., & Natalhy-Pineda, O. (2015). Petrography and geochemistry of sands from the Chachalacas and Veracruz Beach areas, western Gulf of Mexico, Mexico: Constraints on provenance and tectonic setting. Journal of South American Earth Sciences, 64, 199–216.

    Article  Google Scholar 

  • Armstrong-Altrin, J. S., Nagarajan, R., Madhavaraju, J., Rosalez-Hoz, L., Lee, Y. I., Balaram, V., et al. (2013). Geochemistry of the Jurassic and Upper Cretaceous shales from the Molango Region, Hidalgo, Eastern Mexico: Implications for source-area weathering, provenance, and tectonic setting. Comptes Rendus Geosciences, 345, 185–202.

    Article  Google Scholar 

  • Armstrong-Altrin, J. S., & Verma, S. P. (2005). Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sedimentary Geology, 177, 115–129.

    Article  Google Scholar 

  • Balaram, V., & Rao, T. G. (2003). Rapid determination of REE and other trace elements in geological samples by microwave acid digestion and ICP-MS. Atomic Spectroscopy, 24, 206–212.

    Google Scholar 

  • Bhatia, M. R. (1983). Plate tectonics and geochemical composition of sandstones. Geology, 91, 611–627.

    Article  Google Scholar 

  • Bhatia, M. R. (1985). Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control. Sedimentary Geology, 45, 97–113.

    Article  Google Scholar 

  • Bhatia, M. R., & Crook, K. A. W. (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 81–193.

    Article  Google Scholar 

  • Bhushan, S. K., & Sahoo, P. (2010). Geochemistry of clastic sediments from Sargur supracrustals and Bababudan Group, Karnataka: Implications on Archaean Proterozoic Boundary. Journal of the Geological Society of India, 75, 829–840.

    Article  Google Scholar 

  • Bruce Foote, R. (1876) Geology of the Southern Mahratta Country (vol. 12, pt. 1, 268p). Calcutta: Memoirs of the Geological Survey of India.

    Google Scholar 

  • Condie, K. C. (1993). Chemical composition and evolution of upper continental crust: Contrasting results from surface samples and shales. Chemical Geology, 104, 1–37.

    Article  Google Scholar 

  • Cullers, R. L. (2000). The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, U.S.A.: Implications for provenance and metamorphic studies. Lithosphere, 51, 181–203.

    Google Scholar 

  • Cullers, R. L. (1995). The controls on the major and trace element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountain region, Colorado, USA. Chemical Geology, 123, 107–131.

    Article  Google Scholar 

  • Cullers, R. L., & Podkovyrov, V. N. (2000). Geochemistry of the Mesoproterozoic Lakhanda shales in Southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling. Precambrian Research, 104, 77–93.

    Article  Google Scholar 

  • Dey, S., Rai, A. K., & Chaki, A. (2009). Paleoweathering, composition and tectonic of provenance of the Proterozoic intracratonic Kaladgi-Badami basin, Karnataka, Southern India: Evidence from sandstone petrography and geochemistry. Journal of Asian Earth Sciences, 34, 703–715.

    Article  Google Scholar 

  • Dickinson, W. R., Beard, L. S., Brakenridge, G. R., Erjavec, J. L., Ferguson, R. C., Inman, K. F., et al. (1983). Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin, 94, 222–235.

    Article  Google Scholar 

  • Dickinson, W., & Suczek, C. (1979). Plate tectonics and sandstone compositions. American Association of Petroleum, Geological Bulletin, 63, 2164–2182.

    Google Scholar 

  • Diskin, S., Evans, J., Fowler, M. B., & Guion, P. D. (2011). Recognising different sediment provenances within a passive margin setting: Towards characterising a sediment source to the west of the British late Carboniferous sedimentary basin. Chemical Geology, 283, 143–160.

    Article  Google Scholar 

  • Drobe, M., López de Luchi, M. G., Steenken, A., Frei, R., Naumann, R., Siegesmund, S., et al. (2009). Provenance of the late Proterozoic to early Cambrian metaclastic sediments of the Sierra de San Luis (Eastern Sierras Pampeanas) and Cordillera Oriental, Argentina. Journal of South American Earth Sciences, 28, 239–262.

    Article  Google Scholar 

  • Fedo, C. M., Eriksson, K., & Krogstad, E. J. (1996). Geochemistry of shale from the Archaean (~3.0 Ga) Buhwa Greenstone belt, Zimbabwe: Implications for provenance and source area weathering. Geochimica et Cosmochimica Acta, 60, 1751–1763.

    Article  Google Scholar 

  • Fedo, C. M., Nesbitt, H. W., & Young, G. M. (1995). Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosoils, with implications for paleoweathering conditions and provenance. Geology, 23, 921–924.

    Article  Google Scholar 

  • Feng, R., & Kerrich, R. (1990). Geochemistry of fine-grained clastic sediments in the Archaean Abitibi greenstone belt, Canada, implication for provenance and tectonic setting. Geochimica et Cosmochimica Acta, 54, 1061–1081.

    Article  Google Scholar 

  • Floyd, P. A., Shail, R., Leveridge, B. E., & Franke, W. (1991). Geochemistry and provenance of Rhenohercynian synorogenic sandstones: Implications for tectonic environment discrimination. In A. C. Morton, S. P. Todd, & P. D. W. Haughton (Eds.), Developments in sedimentary provenance (Vol. 57, pp. 173–188). London: Geological Society, London, Special Publications.

    Google Scholar 

  • Fu, X., Wang, J., Zeng, Y., Tan, F., & Feng, X. (2010). REE geochemistry of marine oil shale from the Changshe Mountain area, Northern Tibet, China. International Journal of Coal Geology, 81, 191–199.

    Article  Google Scholar 

  • Gabo-Ratio, J. A. S., Dimalanta, C. B., Asio, M. G., Queaño, K. L., Yumul, G. P., & Imai, A. (2009). Geology and geochemistry of the clastic sequences from Northwestern Panay (Philippines): Implications for provenance and geotectonic setting. Tectonophysics, 479, 111–119.

    Article  Google Scholar 

  • Ishiga, H., & Dozen, K. (1997). Geochemical indications of provenance change as recorded in Miocene shales: Opening of the Japan Sea, San’in region, Southwest Japan. Marine Geology, 144, 211–228.

    Article  Google Scholar 

  • Jayananda, M., Moyen, J. F., Martin, H., Peucat, J. J., Auvray, B., & Mahabaleswar, B. (2000). Late Archaean (2550–2520 Ma) juvenile magmatism in the Eastern Dharwar craton, Southern India: Constraints from geochronology, Nd–Sr isotopes and whole rock geochemistry. Precambrian Research, 99, 225–254.

    Article  Google Scholar 

  • Jayaprakash, A. V., Sundaram, V., Hans, S. K., & Mishra, R. N. (1987). Geology of the Kaladgi-Badami basin. Purana basins of Peninsular India (middle to late Proterozoic). Memoir Geological Society of India, 6, 201–226.

    Google Scholar 

  • Krishna, A. K., Murthy, N. N., & Govil, P. K. (2007). Multielement analysis of soils by wavelength-dispersive X-ray fluorescence spectrometry. Atomic Spectroscopy, 28, 202–214.

    Google Scholar 

  • LaMaskin, T. A., Dorsey, R., & Vervoort, J. D. (2008). Tectonic controls on mudrock geochemistry, Mesozoic rocks of eastern Oregon and western Idaho, USA: Implications for Cordilleran tectonics. Journal of Sedimentary Research, 78, 765–783.

    Article  Google Scholar 

  • Le Maitre, R. W. (1976). Some problems of the projection of chemical data into mineralogical classifications. Contributions to Mineralogy and Petrology, 56, 181–189.

    Article  Google Scholar 

  • Madhavaraju, J. (2015). Geochemistry of Late Cretaceous sedimentary rocks of the Cauvery Basin, South India: Constraints on paleoweathering, provenance and end Cretaceous environments. In M. Ramkumar (Ed.), Chemostratigraphy: Concepts, techniques and applications (1st ed., pp. 185–214). Netherlands: Elsevier.

    Chapter  Google Scholar 

  • Madhavaraju, J., & Lee, Y. I. (2010). Influence of Deccan volcanism in the sedimentary rocks of Late Maastrichtian-Danian age of Cauvery basin Southeastern India: Constraints from geochemistry. Current Science, 98, 528–537.

    Google Scholar 

  • Madhavaraju, J., Loser, H., Lee, Y. I., Lozano-Santacruz, R., & Pi-Puig, T. (2016a). Geochemistry of Lower Cretaceous limestones of the Alisitos Formation, Baja California, Mexico: Implications for REE source and paleo-redox conditions. Journal of South American Earth Sciences, 66, 149–165.

    Article  Google Scholar 

  • Madhavaraju, J., Pacheco-Olivas, S. A., González-León, C. M., Espinoza-Maldonado, I. G., Sanchez-Medrano, P. A., et al. (2017). Mineralogy and geochemistry of the lower cretaceous Siliciclastic rocks of the Morita Formation, Sierra San José section, Sonora, Mexico. Journal of South American Earth Sciences. https://doi.org/10.1016/j.jsames.2017.04.001.

    Article  Google Scholar 

  • Madhavaraju, J., & Ramasamy, S. (2002). Petrography and geochemistry of Late Maastrichtian—Early Paleocene sediments of Tiruchirapalli Cretaceous, Tamil Nadu—Paleoweathering and provenance implications. Journal Geological Society of India, 59, 133–142.

    Google Scholar 

  • Madhavaraju, J., Ramírez-Montoya, E., Monreal, R., González-León, C. M., Pi-Puig, T., Espinoza-Maldonado, I. G., et al. (2016b). Paleoclimate, paleoweathering and paleoredox conditions of Lower Cretaceous shales from the Mural Limestone, Tuape section, Northern Sonora, Mexico: Constraints from clay mineralogy and geochemistry. Revista Mexicana de Ciencias Geológicas, 33, 34–48.

    Google Scholar 

  • Madhavaraju, J., Tom, M., Lee, Y. I., Balaram, V., Ramasamy, S., Carranza-Edwards, A., et al. (2016c). Provenance and tectonic settings of sands from Puerto Peñasco, Desemboque and Bahia Kino beaches, Gulf of California, Sonora, Mexico. Journal of South American Earth Sciences, 71, 262–275.

    Article  Google Scholar 

  • Maynard, J. B., Valloni, R., & Yu, H. (1982). Composition of modern deep sea sands from arc-related basins. Geological Society, London, Special Publications, 10, 551–561.

    Article  Google Scholar 

  • McDonough, W. F., & Sun, S. S. (1995). Composition of the earth. Chemical Geology, 120, 223–253.

    Article  Google Scholar 

  • McLennan, S. M. (1989). Rare earth elements in sedimentary rocks: Influences of provenance and sedimentary processes. In B. R. Lipin & G. A. McKay (Eds.), Geochemistry and mineralogy of rare earth elements (Vol. 21, pp. 169–200). Washington, DC: Mineralogical Society of Amer.

    Google Scholar 

  • Merodio, J. C., & Spalletti, L. A. (1990). Geoquímica de pelitas: su empleo en la definición de ambientes sedimentarios y tectónicos para el Ordovícico de la Precordillera Occidental. Revista Asociación Geologica Argentina, 45, 336–345.

    Google Scholar 

  • Moosavirad, S., Janardhana, M., Sethumadhav, M., Moghadam, M., & Shankara, M. (2011). Geochemistry of lower Jurassic shales of the Shemshak Formation, Kerman Province, Central Iran: Provenance, source weathering and tectonic setting. Chemie der Erde, 71, 279–288.

    Article  Google Scholar 

  • Nagarajan, R., Armstrong-Altrin, J. S., Nagendra, R., Madhavaraju, J., & Moutte, J. (2007a). Petrography and geochemistry of terrigenous sedimentary rocks in the Neoproterozoic Rabanpalli Formation, Bhima Basin, southern India: Implications for paleoweathering condition, provenance, and source rock composition. Journal Geological Society of India, 70, 297–312.

    Google Scholar 

  • Nagarajan, R., Madhavaraju, J., Nagendra, R., Armstrong-Altrin, J. S., & Moutte, J. (2007b). Geochemisrty of Neoproterozoic shales of the Rabanpalli Formation Bhima Basin, Northern Karnataka, Southern India: Implications for provenance and paleoredox conditions. Revista Mexicana de Ciencias Geologicas, 24, 20–30.

    Google Scholar 

  • Nath, B. N., Kunzendorf, H., & Pluger, W. L. (2000). Influence of provenance, weathering, and sedimentary process on the elemental ratios of the fine-grained fraction of the bedload sediments from the Vembanad Lake and the adjoining continental shelf, Southwest Coast of India. Journal of Sedimentary Research, 70, 1081–1094.

    Article  Google Scholar 

  • Nesbitt, H. W., Fedo, C. M., & Young, G. M. (1997). Quartz and feldspar stability, steady and non-steady-state weathering and petrogenesis of siliciclastic sands and muds. Journal of Geology, 105, 173–191.

    Article  Google Scholar 

  • Nesbitt, H. W., Markovics, G., & Price, R. C. (1980). Chemical processes affecting alkalies and alkaline earths during continental weathering. Geochimica et Cosmochimica Acta, 44, 1659–1666.

    Article  Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutitas. Nature, 299, 715–717.

    Article  Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48, 1523–1534.

    Article  Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1989). Formation and diagenesis of weathering profiles. Journal of Geology, 97, 129–147.

    Article  Google Scholar 

  • Pe-Piper, G., Triantafyllidis, S., & Piper, D. J. W. (2008). Geochemical identification of clastic sediment provenance from known sources of similar geology: The Cretaceous Scotian basin, Canada. Journal of Sedimentary Research, 78, 595–607.

    Article  Google Scholar 

  • Purevjav, N., & Roser, B. (2012). Geochemistry of Devonian-Carboniferous clastic sediments of the Tsetserleg terrane, Hangay Basin, Central Mongolia: Provenance, source weathering, and tectonic setting. Island Arc, 21, 270–287.

    Article  Google Scholar 

  • Ramachandran, A., Madhavaraju, J., Ramasamy, S., Lee, Y. I., Rao, S., Chawngthu, D. L., et al. (2016). Geochemistry of the Proterozoic clastic rocks of Kerur Formation of Kaladgi-Badami Basin, Northern Karnataka, South India: Implications for paleo weathering and provenance. Turkish Journal of Earth Sciences, 25, 126–144.

    Article  Google Scholar 

  • Rashid, S. (2005). The geochemistry of surface soil from the Garhwal region, NW Lesser Himalaya: An evidence for neotectonic activity in the area. Journal of Mineralogical and Petrological Sciences, 100, 175–183.

    Article  Google Scholar 

  • Roser, B. P., Cooper, R. A., Nathan, S., & Tulloch, A. J. (1996). Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the lower Paleozoic terranes of the West Coast and Nelson, New Zealand. New Zealand Journal of Geology and Geophysics, 39, 1–16.

    Article  Google Scholar 

  • Roser, B. P., & Korsch, R. J. (1985). Plate tectonics and geochemical composition of sandstones: A discussion. Journal of Geology, 93, 81–84.

    Article  Google Scholar 

  • Roser, B. P., & Korsch, R. J. (1986). Determination of tectonic setting of sandstone–mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94, 635–650.

    Article  Google Scholar 

  • Roser, B. P., & Korsch, R. J. (1988). Provenance signatures of sandstone-mudstone suites determined using discrimination function analysis of major-element data. Chemical Geology, 67, 119–139.

    Article  Google Scholar 

  • Ryan, K. M., & Williams, D. M. (2007). Testing the reliability of discrimination diagrams for determining the tectonic depositional environment of ancient sedimentary basins. Chemical Geology, 242, 103–125.

    Article  Google Scholar 

  • Sawyer, E. W. (1986). The influence of source rock type, chemical weathering and sorting on the geochemistry of clastic sediments from the Quetico metasedimentary belt, Superior Province. Chemical Geology, 55, 77–95.

    Article  Google Scholar 

  • Shao, J. A., Liu, F. T., Chen, H., & Han, Q. J. (2001). Relationship between Mesozoic magmatism and subduction in Da Hinggan-Yanshan area. Acta Geologica Sinica, 75, 56–63.

    Google Scholar 

  • Spalletti, L. A., Merodio, J. C., & Matheos, S. D. (1991). Geoquímica y significado tectónico-depositacional de pelitas y margas Cretácico-Terciarias. Noreste de la Patagonia, República Argentina. Revista geológica de Chile, 20, 3–13.

    Google Scholar 

  • Spalletti, L. A., Merodio, J. C., & Matheos, S. D. (1992). Composición, procedencia y marco tectónico de sedimentitas eojurásicas (Formación Nestares) del extremo sudeste de la Cuenca Neuquina. Revista de la Asociación Geológica Argentina, 47, 277–286.

    Google Scholar 

  • Spalletti, L., Queralt, I., Matheos, S., Colombo, F., & Maggi, J. (2008). Sedimentary petrology and geochemistry of siliciclastic rocks from the Upper Jurassic Tordillo Formation (Neuquén Basin, Western Argentina): Implications for provenance and tectonic setting. Journal of South American Earth Sciences, 25, 440–463.

    Article  Google Scholar 

  • Taylor, S. R., & Mclennan, S. M. (1985). The continental crust: Its composition and evolution (p. 349). Oxford: Blackwell UK.

    Google Scholar 

  • Thomas, C. W., & Aitchison, J. (2005). Compositional data analysis of geological variability and process: A case study. Mathematical Geology, 37, 753–772.

    Article  Google Scholar 

  • van de Kamp, P. P., & Leake, B. E. (1985). Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin. Transactions of the Royal Society of Edinburgh, Earth Science, 76, 411–449.

    Article  Google Scholar 

  • Verma, S. P. (2010). Statistical evaluation of bivariate, ternary and discriminant function tectonomagmatic discrimination diagrams. Turkish Journal Earth Sciences, 19, 185–238.

    Google Scholar 

  • Verma, S. P. (2012). Application of multi-dimensional discrimination diagrams and probability calculations to acid rocks from Portugal and Spain. Comunicações Geol., 99, 79–93.

    Google Scholar 

  • Verma, S. P. (2013). Application of 50 multi-dimensional discrimination diagrams and significance tests to decipher compositional similarities and differences between Hawaiian and Icelandic volcanism. International Geologiy Review, 55, 1553–1572.

    Article  Google Scholar 

  • Verma, S. P., & Armstrong-Altrin, J. S. (2013). New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology, 355, 117–133.

    Article  Google Scholar 

  • Verma, S. P., & Armstrong-Altrin, J. S. (2016). Geochemical discrimination of silisiclastic sediments from active and passive margin settings. Sedimentary Geology, 332, 1–12.

    Article  Google Scholar 

  • Verma, S. P., Guevara, M., & Agrawal, S. (2006). Discriminating four tectonic settings: Five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log-ratio transformation of major-element data. Journal of Earth System Science, 115, 485–528.

    Article  Google Scholar 

  • Verma, S. P., Parandinath, K., Verma, S. K., & Agrawal, S. (2013). Fifteen new discriminant-function-based multi-dimensional robust diagrams for acid rocks and their application to Precambrian rocks. Lithosphere, 168–169, 113–123.

    Google Scholar 

  • Wani, H., & Mondal, M. E. A. (2010). Petrological and geochemical evidence of the Paleoproterozoic and the Meso-Neoproterozic sedimentary rocks of the Bastar craton, India Peninsula: Implications on paleoweathering and Proterozoic crustal evolution. Journal of Asian Earth Sciences, 38, 220–232.

    Article  Google Scholar 

  • Wronkiewicz, D. J., & Condie, K. C. (1987). Geochemistry of Archaean shales form the Witwatersrand Supergroup, South Africa. Source-area weathering and provenance. Geochimica et Cosmochimica Acta, 51, 2401–2416.

    Article  Google Scholar 

  • Wronkiewicz, D. J., & Condie, K. C. (1989). Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: Evidence for a 3.0 Ga old continental craton. Geochimica et Cosmochimica Acta, 53, 537–549.

    Article  Google Scholar 

  • Yan, Q. R., Gao, S. L., Wang, Z. Q., Li, J. L., Xiao, W. J., Hou, Q. L., et al. (2002). Geochemical constrains of the sediments on the provenance, depositional environment and tectonic setting of the Songliao prototype basin. Acta Geologica Sinica, 76, 455–462.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank UGC (No: F./PDFSS-2013-14-SC-TAM-5682 dated 7.7.2014) and DAE-BRNS (No. 2008/36/41-BRNS/1969 dated 14/11/2008) for financial support for the project. They are indebted to the Director, AMD, Hyderabad and Regional Director, Dr. A. K. Rai, AMD, Bangalore for various help. We also thank Dr. Nagaraj, Dr. Panneerselvam, Mr. Natarajan, Mr. Nagendra Kumar, and Dr. K. T. Singh, Scientists of AMD-Bangalore, for their help during field work in Mohare site.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Madhavaraju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Velmurugan, K. et al. (2019). Provenance and Tectonic Setting of the Proterozoic Clastic Rocks of the Kerur Formation, Badami Group, Mohare Area, Karnataka, India. In: Mondal, M. (eds) Geological Evolution of the Precambrian Indian Shield. Society of Earth Scientists Series. Springer, Cham. https://doi.org/10.1007/978-3-319-89698-4_11

Download citation

Publish with us

Policies and ethics