Skip to main content

A Tool to Assess Land Use Impacts on Surface Water Quality: Case Study from the Guapi-Macacu River Basin in Rio de Janeiro

  • Chapter
  • First Online:
Strategies and Tools for a Sustainable Rural Rio de Janeiro

Abstract

Impacts of human activities, mainly land use and land cover (LULC) changes, on hydrology and water quality are manifold and need to be ascertained. In order to understand and assess such impacts, water quality monitoring programs are crucial for collecting the required data. Transforming data into information is an important step, and water quality indices (WQIs) can be a useful and concise method for aggregating several parameters and measurements into a single number to facilitate problem identification and decision-making. For this study, a monitoring program was designed and implemented to measure water quality in a rural river basin in Rio de Janeiro (Guapi-Macacu). Three sub-watersheds, together with other relevant sampling points, were selected to assess the influence of the most relevant LULC classes on water quality. The monitored parameters were used to calculate the Canadian water quality index (CCME-WQI). This index was able to capture the impacts of water quality impairments such as untreated sewage and agricultural activities. The index calculation and resultant map, used to depict the spatial distribution, aim at becoming tools for practitioners and decision-makers in the basin.

Resumo (Português) Uma Ferramenta para Avaliar os Impactos do Uso da Terra na Qualidade da Água Superficial: Estudo de Caso da Bacia Hidrográfica Guapi-Macacu no Rio de Janeiro

Os impactos de atividades antrópicas, principalmente relacionados às mudanças no uso e cobertura da terra, na hidrologia e qualidade da água são múltiplos e precisam ser identificados. Os programas de monitoramento da qualidade da água são cruciais para entender e avaliar tais impactos, permitindo coletar os dados necessários. A transformação de dados em informação útil é um passo importante para a gestão de recursos hídricos. Para tal os Índices de Qualidade de Água (IQA) são ferramentas que visam integrar vários parâmetros e medições em um único número, apresentando um resultado conciso, facilitando a identificação de problemas e subsidiando a tomada de decisões. Para este estudo, um programa de monitoramento para medir a qualidade da água foi concebido e implementado na bacia hidrográfica rural Guapi-Macacu no Rio de Janeiro. Três sub-bacias hidrográficas, junto com outros pontos de amostragem relevantes, foram amostrados para avaliar a influência do uso e cobertura da terra na qualidade de água. Os parâmetros físico-químicos monitorados foram utilizados para calcular o índice canadense de qualidade da água (CCME-WQI). Os resultados demonstraram que o CCME-WQI foi capaz de detectar os impactos das principais fontes de poluição, incluindo o esgoto não tratado e as atividades agrícolas. O mapa gerado, descrevendo a distribução espacial dos resultados e a aplicação do índice, visam subsidiar a tomada de decisões na bacia em relação à gestão dos recursos hídricos.

Resumen (Español) Una Herramienta para Evaluar los Impactos del Uso del Suelo en la Calidad del Agua Superficial: Estudio de Caso de la Cuenca Guapi-Macacu en Rio de Janeiro

Los impactos de actividades humanas, principalmente aquellos relacionados con los cambios en el uso del suelo, en la hidrología y la calidad del agua son numerosos y precisan ser identificados. Los programas de monitoreo de la calidad del agua son cruciales para entender y evaluar dichos impactos recolectando los datos necesarios cuya transformación en información útil es un paso importante y necesario para la gestión de los recursos hídricos. Para tal propósito, los índices de calidad del agua son una herramienta que apunta a integrar diversos parámetros y mediciones en un único número, presentando así un resultado simple y conciso, que facilite la identificación de problemas y la toma de decisiones. Para este estudio, un programa de vigilancia fue planeado e implementado para medir la calidad del agua en una cuenca rural (Guapi-Macacu) en el estado de Rio de Janeiro. Tres sub-cuencas, junto con otros puntos de muestreo relevantes, fueron seleccionados para evaluar la influencia en la calidad del agua de los usos del suelo más importantes. Los parámetros físico-químicos observados fueron utilizados para calcular el índice canadiense de la calidad del agua (CCME-WQI). Los resultados demostraron que el CCME-WQI fue capaz de detectar los impactos de las fuentes principales de contaminación, incluyendo las aguas residuales no tratadas y las actividades agrícolas. El índice calculado, junto con el mapa resultante, para mostrar la distribución espacial de la calidad del agua, apuntan a transformarse en una herramienta de gestión utilizada por agencias locales y regionales encargadas de la gestión de los recursos hídricos en la cuenca.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alam RQ, Dufreche S, Hayatdavoudi A, Gang DD (2013) Nonpoint source pollution. Water Environ Res 85:1715–1733. https://doi.org/10.2175/106143013X13698672322822

    Article  Google Scholar 

  • ANA – Agência Nacional de Águas (2012) Sistema Nacional de Informações sobre Recursos Hídricos (SNIRH). http://www.snirh.gov.br/portal/snirh. Accessed 01 May 2017

  • Arreghini S, de Cabo L, Seoane R (2007) A methodological approach to water quality assessment in an ungauged basin, Buenos Aires, Argentina. GeoJournal 70:281–288. https://doi.org/10.1007/s10708-008-9134-z

    Article  Google Scholar 

  • Barreiro M, Chang P, Saravanan R (2002) Variability of the South Atlantic convergence zone simulated by an atmospheric general circulation model. J Clim 15:745–763. https://doi.org/10.1175/1520-0442(2002)015<0745:VOTSAC>2.0.CO;2

    Article  Google Scholar 

  • Benavides Z, Pezza Cintrão R, Fidalgo EC et al (2009) Consumo e abastecimento de água nas bacias hidrográficas dos rios Guapi-Macacu e Caceribu – RJ. Embrapa Solos Report. Embrapa Solos - the Brazilian research institute, Documentos 115, Rio de Janeiro

    Google Scholar 

  • Carr GM, Rickwood CJ (2008) Water quality index for biodiversity technical development document. Prepared for Biodiversity Indicators Partnership, World Conservation Monitoring Center, Cambridge, UK, p. 64

    Google Scholar 

  • CCME (2001) Canadian water quality guidelines for the protection of aquatic life: CCME Water Quality Index 1.0, User’s Manual. Winnipeg

    Google Scholar 

  • Coats R, Larsen M, Heyvaert A et al (2008) Nutrient and sediment production, watershed characteristics, and land use in the Tahoe basin, California-Nevada. J Am Water Resour Assoc 44:754–770. https://doi.org/10.1111/j.1752-1688.2008.00203.x

    Article  CAS  Google Scholar 

  • Corcoran E, Nellemann C, Baker E et al (2010) Sick water? The central role of wastewater management in sustainable development. A Rapid Response Assessment. United Nations Environment Programme (UNEP), UN-Habitat, GRID-Arendal

    Google Scholar 

  • da Costa Dantas JR, de Almeida JR, Lins GA (2007) Impactos ambientais na bacia hidrográfica de Guapi/Macacu e suas conseqüências para o abastecimento de água nos municípios do leste da Baia de Guanabara. Série gestão e planejamento ambiental, coleção artigo técnicos no 7. CETEM/MCT, Rio de Janeiro

    Google Scholar 

  • Duh JD, Shandas V, Chang H, George LA (2008) Rates of urbanisation and the resiliency of air and water quality. Sci Total Environ 400:238–256. https://doi.org/10.1016/j.scitotenv.2008.05.002

    Article  CAS  Google Scholar 

  • Esty DC, Levy MA, Srebotnjak T et al (2006) Pilot 2006 environmental performance index. Yale Center for Environmental Law & Policy, New Haven

    Google Scholar 

  • Fernandes NF, Tupinambá M, Mello CL, de Peixoto MNO (2010) Rio de Janeiro: a metropolis between granite-gneiss massifs. In: Migon P (ed) Geomorphological landscapes of the world. Springer, p 387

    Google Scholar 

  • Ferrari AL (2001) Evolução tectônica do graben da Guanabara. Doctoral Dissertation, Biblioteca Digital de Teses e Dissertações da USP

    Google Scholar 

  • Ferreira NC, Bonetti C, Seiffert WQ (2011) Hydrological and water quality indices as management tools in marine shrimp culture. Aquaculture 318:425–433. https://doi.org/10.1016/j.aquaculture.2011.05.045

    Article  Google Scholar 

  • Fidalgo EC, da BCC Gomes Pedreira, Bueno de Abreu M, et al (2008) Uso e cobertura da terra na bacia hidrográfica do rio Guapi-Macacu. Embrapa Solos Report, Documentos 105, Rio de Janeiro

    Google Scholar 

  • Haldar D, Halder S, Das (Saha) P, Halder G (2016) Assessment of water quality of Damodar River in south Bengal region of India by Canadian Council of Ministers of Environment (CCME) Water Quality Index: a case study. Desalin Water Treat 57:3489–3502. https://doi.org/10.1080/19443994.2014.987168

    Article  CAS  Google Scholar 

  • Horn AL, Rueda FJ, Hörmann G, Fohrer N (2004) Implementing river water quality modelling issues in mesoscale watershed models for water policy demands––an overview on current concepts, deficits, and future tasks. Phys Chem Earth Parts A/B/C 29:725–737. https://doi.org/10.1016/j.pce.2004.05.001

    Article  Google Scholar 

  • Johnes PJ, Heathwaite AL (1997) Modelling the impact of land use change on water quality in agricultural catchments. Hydrol Process 11:269–286

    Article  Google Scholar 

  • Lumb A, Sharma TC, Bibeault J-F (2011) A review of genesis and evolution of Water Quality Index (WQI) and some future directions. Water Qual Expo Heal 3:11–24. https://doi.org/10.1007/s12403-011-0040-0

    Article  Google Scholar 

  • Lumb A, Sharma TC, Bibeault J-F, Klawunn P (2012) A comparative study of USA and Canadian Water Quality Index models. Water Qual Expo Heal 3:203–216. https://doi.org/10.1007/s12403-011-0056-5

    Article  CAS  Google Scholar 

  • McCoy N, Chao B, Gang DD (2015) Nonpoint source pollution. Water Environ Res 87:1576–1594. https://doi.org/10.2175/106143015X14338845156263

    Article  CAS  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. https://doi.org/10.1038/35002501

    Article  CAS  Google Scholar 

  • Nelson GC (2005) Drivers of ecosystem change: summary chapter. In Ecosystems and Human Well-Being: Volume I: Current State and Trends, R Hassan, R Scholes, and N Ash, Eds., Island Press, Washington, DC, 73–76

    Google Scholar 

  • Ouyang W, Wang X, Hao F, Srinivasan R (2009) Temporal-spatial dynamics of vegetation variation on non-point source nutrient pollution. Ecol Model 220:2702–2713. https://doi.org/10.1016/j.ecolmodel.2009.06.039

    Article  CAS  Google Scholar 

  • Pedreira BCCG, Abreu MB, Fidalgo ECC (2007) Proposta de legenda para o mapeamento do uso e cobertura da terra na bacia hidrográfica do Rio Macacu, RJ. Embrapa Solos Report, Documentos 91, Rio de Janeiro

    Google Scholar 

  • Pinheiro HSK, da Chagas CS, de Carvalho W Jr, dos Anjos LHC (2012) Modelos de elevação para obtenção de atributos topográficos utilizados em mapeamento digital de solos. Pesqui Agropecuária Bras 47:1384–1394

    Article  Google Scholar 

  • Rachedi LH, Amarchi H (2015) Assessment of the water quality of the Seybouse River (North-East Algeria) using the CCME WQI model. Water Sci Tech-W Sup 15(4):793–801. https://doi.org/10.2166/ws.2015.033

    Article  CAS  Google Scholar 

  • Riccomini C, Sant’Anna LG, Ferrari AL (2004) Evolução geológica do Rift Continental do sudeste do Brasil. In: Mantesso-Neto V, Bartorelli A, Carneiro CDR, de Brito Neves BB (eds) Geologia do Continente Sul-Americano: Evoluçao da obra de Fernando Flávio Marques de Almeida. Beca, Sao Paulo, pp 383–405

    Google Scholar 

  • Telci IT, Nam K, Guan J, Aral MM (2009) Optimal water quality monitoring network design for river systems. J Environ Manag 90:2987–2998. https://doi.org/10.1016/j.jenvman.2009.04.011

    Article  Google Scholar 

  • Tong STY, Chen W (2002) Modeling the relationship between land use and surface water quality. J Environ Manag 66:377–393. https://doi.org/10.1006/jema.2002.0593

    Article  Google Scholar 

  • Tu J (2013) Spatial variations in the relationships between land use and water quality across an urbanization gradient in the watersheds of northern Georgia, USA. Environ Manag 51:1–17. https://doi.org/10.1007/s00267-011-9738-9

    Article  Google Scholar 

  • UFF/FEC (2010) Planejamento estratégico da região hidrográfica dos rios Guapi-Macacu e Caceribu-Macacu, Niterói. Published by Universidade Federal Fluminense and Fundação Euclides da Cunha

    Google Scholar 

  • UNEP/GEMS (2007) Global Drinking Water Quality Index: development and sensitivity analysis. Prepared and published by the United Nations Environment Programme Global Environment Monitoring System (GEMS)/Water Programme

    Google Scholar 

  • Venkatramanan S, Chung SY, Ramkumar T et al (2016) Assessment of groundwater quality using GIS and CCME WQI techniques: a case study of Thiruthuraipoondi city in Cauvery deltaic region, Tamil Nadu, India. Desalin Water Treat 57:12058–12073. https://doi.org/10.1080/19443994.2015.1048740

    Article  CAS  Google Scholar 

  • Walton RS, Hunter HM (2009) Isolating the water quality responses of multiple land uses from stream monitoring data through model calibration. J Hydrol 378:29–45. https://doi.org/10.1016/j.jhydrol.2009.09.004

    Article  CAS  Google Scholar 

  • Ward RC, Loftis JIMC, Collins F, Graham B (1986) The “ data-rich but information-poor ” syndrome in water quality monitoring. Environ Manag 10:291–297

    Article  Google Scholar 

  • Webb TJ, Woodward FI, Hannah L, Gaston KJ (2005) Forest cover-rainfall relationships in a biodiversity hotspot: the Atlantic Forest of Brazil. Ecol Appl 15:1968–1983. https://doi.org/10.1890/04-1675

    Article  Google Scholar 

  • Wilson CO (2015) Land use/land cover water quality nexus: quantifying anthropogenic influences on surface water quality. Environ Monit Assess 187:424. https://doi.org/10.1007/s10661-015-4666-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Penedo-Julien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Penedo-Julien, S., Künne, A., Bardy Prado, R., Ribbe, L. (2019). A Tool to Assess Land Use Impacts on Surface Water Quality: Case Study from the Guapi-Macacu River Basin in Rio de Janeiro. In: Nehren, U., Schlϋter, S., Raedig, C., Sattler, D., Hissa, H. (eds) Strategies and Tools for a Sustainable Rural Rio de Janeiro. Springer Series on Environmental Management. Springer, Cham. https://doi.org/10.1007/978-3-319-89644-1_19

Download citation

Publish with us

Policies and ethics