Skip to main content

Integrating Biodiversity Conservation into Agroecosystem Management: Using Birds to Bring Conservation and Agricultural Production Together

  • Chapter
  • First Online:
Strategies and Tools for a Sustainable Rural Rio de Janeiro

Abstract

The conversion of natural areas into agricultural systems for food and energy production has globally put biodiversity and ecosystem functions at risk. Recent research has focused on characterizing biodiversity and ecological functions, e.g., pollination, seed dispersal, and control of herbivorous arthropods, as well as on the best agricultural practices to consort the production and conservation of natural environments. In this context, birds can serve as models – both for the relatively good taxonomic resolution and ecological knowledge and for the range of ecosystem services that they consistently perform. We discuss the most sustainable practices for both the maintenance of biodiversity focusing on bird fauna and of ecological processes, and thus for human well-being. In order to close ranks between biodiversity conservation and agricultural production, biodiversity can be incorporated directly or indirectly into agroecosystem management, either to measure or monitor ecological parameters, to identify priority areas for conservation, or to identify suitable native plant species for ecological restoration or agricultural productivity. For the state of Rio de Janeiro (RJ), different ecosystem management solutions are developed to link biodiversity conservation with the safe operation of agroecosystem and sustainable production, taking into account Brazil’s complex legal-environmental framework.

Resumo (Português) Integrando a Conservação da Biodiversidade no Manejo de Sistemas Agrícolas: Uso de Aves para Consorciar a Conservação e a Produção Agrícola

A conversão de áreas naturais em sistemas agrícolas para a produção de alimentos e energia, tem colocado em risco a biodiversidade e as funções ecossistêmicas. Pesquisas recentes têm focado em caracterizar a biodiversidade e as funções ecológicas (por exemplo, polinização, dispersão de sementes e controle de artrópodes herbívoros), bem como sobre as melhores práticas agrícolas para consorciar a produção e conservação dos ambientes naturais. Neste contexto, aves servem os modelos, tanto por sua relativamente boa resolução taxonômica, quanto pelo conhecimento ecológico e a gama de serviços ecossistêmicos que eles reconhecidamente desempenham. Neste capítulo, discutimos as práticas mais sustentáveis para a manutenção da biodiversidade (focando na avifauna) e processos ecológicos e, portanto, para o bem-estar humano. A biodiversidade pode ser incorporada direta ou indiretamente no gerenciamento dos ecossistemas, seja para medir ou monitorar parâmetros ecológicos, detectar áreas prioritárias para conservação ou para identificar espécies de plantas nativas adequadas para restauração ecológica e produtividade agrícola. Para o estado do Rio de Janeiro, são desenvolvidas diferentes soluções de gerenciamento de ecossistemas, para vincular a conservação da biodiversidade com o manejo adequado e a produção sustentável, levando-se em consideração o complexo quadro jurídico-ambiental do Brasil.

Resumen (Español) Integración de la Conservación de la Biodiversidad en el Manejo de Agroecosistemas: Uso de Aves para Integrar la Conservación y la Producción Agricola

La conversión de áreas naturales en sistemas agrícolas para la producción de alimentos y energía ha puesto en riesgo la biodiversidad y las funciones ecosistémicas. Las investigaciones recientes se han centrado en caracterizar la biodiversidad y las funciones ecológicas (por ejemplo: polinización, dispersión de semillas y control de artrópodos herbívoros), así como las mejores prácticas agrícolas para consagrar la producción y la conservación de los ambientes naturales. En este contexto, las aves sirven como modelo, tanto por su relativamente buena resolución taxonómica, como por el conocimiento ecológico y la gama de servicios ecosistémicos que consistentemente desempeñan. En este capítulo, discutimos las prácticas más sostenibles para el mantenimiento de la biodiversidad (enfocándose en la avifauna) y procesos ecológicos y, por lo tanto, para el bienestar humano. La biodiversidad puede ser incorporada directa o indirectamente en el manejo de los ecosistemas, sea para medir o monitorear parámetros ecológicos, detectar áreas prioritarias para la conservación o para identificar especies de plantas nativas adecuadas para restauración ecológica o productividad agrícola. Para el estado de Rio de Janeiro, se desarrollan diferentes soluciones de gestión de ecosistemas, a fin de vincular la conservación de la biodiversidad con el manejo adecuado y la producción sostenible, teniendo en cuenta el complejo marco jurídico-ambiental de Brasil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Fiscal module is an agrarian unit of measure that represents the minimum area required for rural properties to be considered economically viable (Landau et al. 2012).

References

  • Alexandrino ER, Buechley ER, Piratelli AJ et al (2016) Bird sensitivity to disturbance as an indicator of forest patch conditions: an issue in environmental assessments. Ecol Indic 66:369–381. https://doi.org/10.1016/j.ecolind.2016.02.006

    Article  Google Scholar 

  • Azevedo AA, Saito CH (2013) O perfil do desmatamento em Mato Grosso, após implementação do licenciamento ambiental em propriedades rurais. Cerne 19(1):111–122

    Article  Google Scholar 

  • Barbier EB (2004) Agricultural expansion, resource booms and growth in Latin America: implications for long-run economic development. World Dev 32(1):137–157

    Article  Google Scholar 

  • Barrett GW, Ford H, Recher HF (1994) Conservation of woodland birds in a fragmented rural landscape. Pac Conserv Biol 1:245–256

    Article  Google Scholar 

  • Beecher N, Johnson RJ, Brandle JR et al (2002) Agroecology of birds in organic and nonorganic farmland. Conserv Biol 16(6):1620–1631

    Article  Google Scholar 

  • Beston JA, Diffendorfer JE, Loss SR et al (2016) Prioritizing avian species for their risk of population-level consequences from wind energy development. Plos One 11(3):e0150813

    Google Scholar 

  • Bhagwat SA, Willis KJ, Birks HJB, Whittaker RJ (2008) Agroforestry: a refuge for tropical biodiversity? Trends Ecol Evolut 23(5):261–267

    Article  Google Scholar 

  • Brasil (2006) Lei 11428. http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2006/lei/l11428.htm. Accessed 06 May 2017

  • Brasil (2012) Lei 12651. Casa civil: Presidência da República http://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12651.htm. Accessed 06 May 2017

  • Brasil (2014a) Plano Nacional de Recuperação da Vegetação Nativa-PLANAVEG. http://www.mma.gov.br/images/arquivo/80049/Planaveg/PLANAVEG_20-11-14.pdf. Accessed 06 May 2017

  • Brasil (2014b) Decreto 8235, Brasil: Diário oficial da união, May 5, Ano CLI no 83-A. http://www.planalto.gov.br/ccivil_03/_Ato2011-2014/2014/Decreto/D8235.htm. Accessed 08 May 2017

  • Brasil (2016) Cadastro ambiental rural. http://www.car.gov.br/#/. Accessed 01 May 2017

  • Brasil (2017) Lei 8952. http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2017/decreto/D8972.htm. Accessed 01 May 2017

  • Buechley ER, Şekercioğlu CH, Atickem A et al (2015) Importance of Ethiopian shade coffee farms for forest bird conservation. Biol Conserv 188:50–60

    Article  Google Scholar 

  • Calvi GP, Piña-Rodrigues FCM (2005) Fenologia e produção de sementes de Euterpe Edulis – Mart em trecho de floresta de altitude no município de Miguel Pereira-Rj. Revista Universidade Rural: série Ciências da Vida 25(1):33–40

    Google Scholar 

  • Caro T, Darwin J, Forrester T et al (2011) Conservation in the Anthropocene. Conserv Biol 26(1):185–188

    Article  Google Scholar 

  • Cassano CR, Silva RM, Mariano-Neto E et al (2016) Bat and bird exclusion but not shade cover influence arthropod abundance and cocoa leaf consumption in agroforestry landscape in Northeast Brazil. Agric Ecosyst Environ 232:247–253. https://doi.org/10.1016/j.agee.2016.08.013

    Article  Google Scholar 

  • Classen A, Peters MK, Ferger SW et al (2014) Complementary ecosystem services provided by pest predators and pollinators increase quantity and quality of coffee yields. Proc Biol Sci / The Royal Society 281(1779):20133148

    Article  Google Scholar 

  • Corlett RT (2015) The Anthropocene concept in ecology and conservation. Trends Ecol Evolut 30(1):36–41. https://doi.org/10.1016/j.tree.2014.10.007

    Article  Google Scholar 

  • Develey PF, Pongiluppi T (2010) Impactos potenciais na avifauna decorrentes das alterações propostas para o Código Florestal Brasileiro Impactos potenciais na avifauna decorrentes das alterações propostas para o Código Florestal Brasileiro. Biota Neotropica 10(4):43–46

    Article  Google Scholar 

  • Dixon RK (1995) Agroforestry systems: sources or sinks of greenhouse gases? Agrofor Syst 31(2):99–116

    Article  Google Scholar 

  • Domínguez-López ME, Ortega-Álvarez R (2014) The importance of riparian habitats for avian communities in a highly human-modified Neotropical landscape. Revista Mexicana de Biodiversidad 85(4):1217–1227

    Google Scholar 

  • Douglas DJT, Nawanga D, Katebaka R et al (2014) The importance of native trees for forest bird conservation in tropical farmland. Anim Conserv 17(3):256–264

    Article  Google Scholar 

  • Duelli P, Obrist MK (2003) Regional biodiversity in an agricultural landscape: the contribution of seminatural habitat islands. Basic Appl Ecol 4(2):129–138

    Google Scholar 

  • Espinel ML, Schlüter S, Resende CM (2018) Towards good agricultural practices (GAP) in smallholders’ dairy production systems from an animal welfare perspective. In: Nehren U, Schlüter S, Raedig C, Sattler D, Hissa H (eds) Strategies and tools for a sustainable rural Rio de Janeiro. Springer International Publishing, Cham

    Google Scholar 

  • FAO (2009) Glossary on organic agriculture. ftp://ftp.fao.org/docrep/fao/012/k4987t/k4987t.pdf. Accessed 08 May 2017

  • FAO, IFAD, WFP (2015) The State of Food Insecurity in the World 2015. Meeting the 2015 International Hunger Targets: Taking Stock of Uneven Progress. Rome, FAO

    Google Scholar 

  • Fischer SB, Pedraza Luengas A, Schlüter S, Oliveira Antunes LA (2018) From design to implementation: a participatory appraisal for silvopastoral systems. In: Nehren U, Schlüter S, Raedig C, Sattler D, Hissa H (eds) Strategies and tools for a sustainable rural Rio de Janeiro. Springer International Publishing, Cham

    Google Scholar 

  • Foley J, Defries R, Asner GP et al (2005) Global consequences of land use. Science 309(5734):570–574

    Google Scholar 

  • Frishkoff LO, Karp DS, M’Gonigle KL et al (2014) Loss of avian phylogenetic diversity in neotropical agricultural systems. Science 345(6202):1343–1346

    Article  CAS  Google Scholar 

  • Galetti M, Pardini R, Duarte JMB et al (2010) Mudanças no Código Florestal e seu impacto na ecologia e diversidade dos mamíferos no Brasil. Biota Neotropica 10(4):47–52

    Article  Google Scholar 

  • Galetti M, Guevara R, Côrtes MC et al (2013) Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340:1086–1091

    Article  CAS  Google Scholar 

  • Gebhardt K, Anderson AM, Kirkpatrick KN, Shwiff SA (2011) A review and synthesis of bird and rodent damage estimates to select California crops. Crop Prot 30(9):1109–1116

    Article  Google Scholar 

  • Gonthier DJ, Ennis KK, Farinas S et al (2014) Biodiversity conservation in agriculture requires a multi-scale approach. Proc R Soc B 281:9–14. https://doi.org/10.1098/rspb.2014.1358

    Article  Google Scholar 

  • Gouvello C (2010) Estudo de baixo carbono para o Brasil. Banco Internacional para Reconstrução e Desenvolvimento / Banco Mundial.​http://siteresources.worldbank.org/BRAZILINPOREXTN/Resources/3817166-1276778791019/Relatorio_Principal_integra_Portugues.pdf. Accessed 12 April 2018

    Google Scholar 

  • Greenberg R, Bichier P, Angon AC et al (2000) The impact of avian insectivory on arthropods and leaf damage in some Guatemalan coffee plantations. Ecology 81(6):1750–1755

    Article  Google Scholar 

  • de Groot RS, Wilson MA, Boumans RMJ (2002) A typology for the classification, description and valuation of ecosystem functions, goods and services. Figure 1: framework for integrated assessment and valuation of ecosystem functions, goods and services. Ecol Econ 41:1–20

    Google Scholar 

  • de Groot RS, Alkemade R, Hein BL, Willemen L (2010) Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol Complex 7(3):260–272

    Article  Google Scholar 

  • Guzmán Wolfhard L, Raedig C (2018) Connectivity conservation management: connecting private protected areas. In: Nehren U, Schlüter S, Raedig C, Sattler D, Hissa H (eds) Strategies and tools for a sustainable rural Rio de Janeiro. Springer International Publishing, Cham

    Google Scholar 

  • Hernandez SM, Mattsson BJ, Peters VE et al (2013) Coffee agroforests remain beneficial for Neotropical bird community conservation across seasons. PLoS ONE 8(9): e65101

    Google Scholar 

  • Hissa H, Teixeira N, Costa M et al (2018) Sustainable rural development in Rio de Janeiro state: the Rio rural program. In: Nehren U, Schlüter S, Raedig C, Sattler D, Hissa H (eds) Strategies and tools for a sustainable rural Rio de Janeiro. Springer International Publishing, Cham

    Google Scholar 

  • Hooper E, Legendre P, Condit R (2005) Barriers to forest regeneration of deforested and abandoned land in Panama. J Appl Ecol 42(6):1165–1174

    Article  Google Scholar 

  • del Hoyo J, Elliott A, Christie DA (2016) Handbook of the birds of the world alive, Barcelona: Lynx Edicions

    Google Scholar 

  • IBGE – Instituto Brasileiro de Geografia e Estatística, 2011. Estatísticas meio rural- 2010. Ministério do Planejamento

    Google Scholar 

  • Janzen DH (1999) Gardenification of tropical conserved wildlands: multitasking, multicropping, and multiusers. Proc Natl Acad Sci U S A 96(11):5987–5994

    Article  CAS  Google Scholar 

  • Johnson RJ, Jedlicka JA, Quinn JE, Brandle JR (2011) Global perspectives on birds in agricultural landscapes. In: Campbell W, López Ortíz L (eds) Integrating agriculture, conservation and ecotourism: examples from the field, Issues in agroecology – present status and future prospectus. Springer, Dordrecht/Heidelberg/London/New York, pp 55–140

    Google Scholar 

  • Jones GA, Sieving KE, Jacobson SK (2005) Avian diversity and functional insectivory on North-Central Florida farmlands. Conserv Biol 19(4):1234–1245

    Google Scholar 

  • Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76(1):1–10

    Article  Google Scholar 

  • Jose S (2012) Agroforestry for conserving and enhancing biodiversity. Agrofor Syst 85(1):1–8

    Article  Google Scholar 

  • Karp DS, Daily GC (2014) Cascading effects of insectivorous birds and bats in tropical coffee plantations. Ecology 95(4):1065–1074

    Article  Google Scholar 

  • Klink CA, Machado RB (2005) Conservation of the Brazilian Cerrado. Conserv Biol 19(3):707–713

    Article  Google Scholar 

  • Lamônica KR, Barroso DG (2008) Sistemas agroflorestais: aspectos básicos e recomendações, 1st edn. Secretaria de Agricultura, Pecuária, Pesca e Abastecimento, Rio de Janeiro

    Google Scholar 

  • Landau EC, Cruz RK, Hirsch A et al (2012) Variação geográfica dos tamanhos dos módulos fiscais no Brasil Documentos. Embrapa Milho e Sorgo, Sete Lagoas

    Google Scholar 

  • Lindell CA, Chomentowski WH, Zook JR (2004) Characteristics of bird species using forest and agricultural land covers in southern Costa Rica. Biodivers Conserv 13(13):2419–2441

    Article  Google Scholar 

  • McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evolut 14(11):450–453

    Article  CAS  Google Scholar 

  • Metzger JP (2010) O Código Florestal tem base científica? Natureza & Conservação 8(1):1–5

    Article  Google Scholar 

  • Miller RP (2009) Construindo a complexidade: o encontro de paradigmas agroflorestais. Agrofloresta.net, p.21. http://media0.agrofloresta.net/static/artigos/Construindo_a_complexidade-Robert_Miller.pdf. Accessed 12 April 2018

    Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: Current State and Trends. Island Press, Washington

    Google Scholar 

  • Morrison E, Lindell C (2012) Birds and bats reduce insect biomass and leaf damage in tropical forest restoration sites. Ecol Appl 22(5):1526–1534

    Article  Google Scholar 

  • Muler AE, Rother DC, Brancalion PS et al (2014) Can overharvesting of a non-timber-forest-product change the regeneration dynamics of a tropical rainforest? The case study of Euterpe edulis. For Ecol Manag 324:117–125

    Google Scholar 

  • Murray DAH, Clarke MB, Ronning DA (2013) Estimating invertebrate pest losses in six major Australian grain crops. Aust J Entomol 52(3):227–241

    Article  Google Scholar 

  • Nair PKR (2012) Carbon sequestration studies in agroforestry systems: a reality-check. Agrofor Syst 86(2):243–253

    Article  Google Scholar 

  • Newbold T, Scharlemann JPH, Butchart SHM et al (2013) Ecological traits affect the response of tropical forest bird species to land-use intensity ecological traits affect the response of tropical forest bird species to land-use intensity. Proc R Soc B Biol Sci 280(1750). https://doi.org/10.1098/rspb.2012.2131

  • Newbold T, Hudson LN, Hill SL et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520(7545):45–50

    Article  CAS  Google Scholar 

  • Noble IR, Dirzo R (1997) Forests as human-dominated ecosystems. Science 277(5325):522–525

    Google Scholar 

  • Nyffeler M, Benz G (1987) Spiders in natural pest control: a review. J Appl Enthomol 103:321–339

    Article  Google Scholar 

  • Oliveira AB, Cruz RB, Carmo CAFS (2009) A seringueira no estado do Rio de Janeiro: histórico, situação e potencialidade da atividade. Pesagro Rio. ​http://www.pesagro.rj.gov.br/downloads/infonline/online15.pdf. Accessed 12 April 2018

    Google Scholar 

  • Peisley RK, Saunders ME, Luck GW (2015) A systematic review of the benefits and costs of bird and insect activity in agroecosystems. Springer Sci Rev 3(2):113–125

    Article  Google Scholar 

  • de la Peña-Domene M, Martízez-Garza C, Palmas-Pérez S et al (2014) Roles of birds and bats in early tropical-forest restoration. PLoS One 9(8):104656

    Google Scholar 

  • Petit LJ, Petit DR (2003) Evaluating the importance of human-modified lands for neotropical bird conservation. Conserv Biol 17(3):687–694

    Article  Google Scholar 

  • Petit LJ, Petit DR, Christian DG, Powell HDW (1999) Bird communities of natural and modified habitats in Panama. Ecography 22(3):292–304

    Article  Google Scholar 

  • Pimm SL, Raven P (2000) Biodiversity: Extinction by numbers. Nature 403(6772):843–845

    Google Scholar 

  • Piña-Rodrigues FCM, Franco FS, Capelo FFM et al. (2013). Conservação ex-situ: dos bancos de germoplasma aos sistemas agroflorestais. In Piratelli AJ, Francisco MR (eds) Conservação da biodiversidade: dos conceitos às ações. Rio de Janeiro: Technical Books, pp 274–183

    Google Scholar 

  • Power AG (2010) Ecosystem services and agriculture: tradeoffs and synergies. Philos Trans R Soc Lond Ser B Biol Sci 365(1554):2959–2971

    Article  Google Scholar 

  • Reis M, Fantini AC, Nodari RO et al (2000) Sustainable yield management of E uterpe edulis Martius (Palmae). J Sustain For 11(3):1–17

    Google Scholar 

  • Renwick AR, Vickery JA, Potts SG et al (2014) Achieving production and conservation simultaneously in tropical agricultural landscapes. Agric Ecosyst Environ 192:130–134

    Article  Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC et al (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142(6):1141–1153

    Article  Google Scholar 

  • Rodrigues RR, Gandolfi S, Nave AG et al (2011) Large-scale ecological restoration of high-diversity tropical forests in SE Brazil. For Ecol Manag 261(10):1605–1613

    Article  Google Scholar 

  • Rother DC, Rodrigues RR, Pizo MA (2009) Effects of bamboo stands on seed rain and seed limitation in a rainforest. For Ecol Manag 257(3):885–892

    Article  Google Scholar 

  • Santiago TMO, Rezende JLP, Borges LAC (2017). The legal reserve: historical basis for the understanding and analysis of this instrument. Cienc. Rural 47(2): e20141349

    Google Scholar 

  • Santos EV, Lima MS (2015) O rural no norte fluminense. In Rio de Janeiro. A diversidade da geografia brasileira: escalas e dimensões da análise e da ação. ENANPEGE, Rio de Janeiro, pp 2828–2839

    Google Scholar 

  • Sarrazin F, Lecomte J (2016) Evolution in the Anthropocene. Science 351(6276):922–923

    Article  CAS  Google Scholar 

  • Schroeder P (1994) Carbon storage benefits of agroforestry systems. Agrofor Syst 27(1):89–97

    Article  Google Scholar 

  • SEA/INEA (2016) Diário Oficial de 19 de maio de 2016. https://www.jusbrasil.com.br/diarios/116189547/doerj-poder-executivo-19-05-2016-pg-20. Accessed 12 April 2018

    Google Scholar 

  • Secretaria do Meio Ambiente (2008) Resolução SMA no 44, São Paulo. http://www.ambiente.sp.gov.br/legislacao/resolucoes-sma/resolucao-sma-44-2008/. Accessed 12 April 2018

    Google Scholar 

  • Sekercioglu CH (2012) Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. J Ornithol 153(1):153–161

    Article  Google Scholar 

  • SEPLAG – Secretaria de Estado de Planejamento e Gestão (2011). Plano básico para o desenvolvimento da silvicultura sustentável para as regiões Norte e Noroeste do estado do Rio de Janeiro: Volume I, Estudo das Florestas Comerciais e Naturais, p 274

    Google Scholar 

  • Serviço Florestal Brasileiro (2017) CAR - Cadastro Ambiental Rural. http://www.florestal.gov.br/snif/gestao-florestal/cadastro-ambiental-rural. Accessed 12 April 2018

    Google Scholar 

  • Sick H (1997) Ornitologia Brasileira. Rio de Janeiro: Editora Nova Fronteira

    Google Scholar 

  • da Silva JZ (2011) Fundamentos da Produção e Consumo de Frutos em Populações Naturais de Euterpe edulis Martius. http://repositorio.ufsc.br/xmlui/bitstream/handle/123456789/96070/298225.pdf?sequence=1. Accessed 12 April 2018

    Google Scholar 

  • Silva-Andrade HL, de Andrade LP, Muniz LS (2016) Do farmers using conventional and non- conventional systems of agriculture have different perceptions of the diversity of wild birds? Implications for Conservation. ​PLoS ONE 11(5):e0156307 

    Google Scholar 

  • Soares-Filho B, Rajão R, Macedo M et al (2014) Cracking Brazil’s forest code. Science 344:363–364

    Article  CAS  Google Scholar 

  • Somarriba E (1992) Revisiting the past: an essay on agroforestry definition. Agrofor Syst 19(3):233–240

    Article  Google Scholar 

  • SOSMA – SOS Mata Atlântica, INPE – Instituto Nacional de Pesquisa Espacial (2014) Atlas dos remanescentes florestais da Mata Atlântica período 2012 a 2013. https://www.sosma.org.br/wp-content/uploads/2014/05/atlas_2012-2013_relatorio_tecnico_20141.pdf. Accessed 12 April 2018

    Google Scholar 

  • Souza MCS, Piña-Rodrigues FCM, Casagrande JC et al (2016) Funcionalidade ecológica de sistemas agroflorestais biodiversos: Uso da serapilheira como indicador da recuperação de áreas de preservaçãoo permanente. Floresta 46(1):75–82

    Article  Google Scholar 

  • Tscharntke T, Clough W, Wanger TC et al (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151(1):53–59

    Article  Google Scholar 

  • Uezu A, Beyer DD, Metzger JP (2008) Can agroforest woodlots work as stepping stones for birds in the Atlantic forest region? Biodivers Conserv 17(8):1907–1922

    Article  Google Scholar 

  • Wenny D, DeVault TL, Johnson MD et al (2011) The need to quantify ecosystem services provided by birds. Auk 128(1):1–14

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusto João Piratelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Piratelli, A.J., Piña-Rodrigues, F.C.M., Raedig, C. (2019). Integrating Biodiversity Conservation into Agroecosystem Management: Using Birds to Bring Conservation and Agricultural Production Together. In: Nehren, U., Schlϋter, S., Raedig, C., Sattler, D., Hissa, H. (eds) Strategies and Tools for a Sustainable Rural Rio de Janeiro. Springer Series on Environmental Management. Springer, Cham. https://doi.org/10.1007/978-3-319-89644-1_10

Download citation

Publish with us

Policies and ethics