Advertisement

SCATTER: A New Dimension in Side-Channel

  • Hugues Thiebeauld
  • Georges Gagnerot
  • Antoine Wurcker
  • Christophe Clavier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10815)

Abstract

Side-channel techniques have been progressing over the last few years, leading to the creation of a variety of statistical tools, aiming at extracting secrets handled in cryptographic algorithms. Noticeably, the vast majority of side-channel techniques requires to get the traces aligned together prior to applying statistics. This prerequisite turns out to be challenging in the practical realization of attacks as implementations tend to include hardware or software countermeasures to increase this difficulty. This is typically achieved by adding random jitters or random executions with fake operations. In this paper, we introduce the new side-channel technique scatter, whose potential is to tackle alignment issues. By construction, scatter brings an additional dimension and opens the door to a large set of potential new attack techniques. The effectiveness of scatter has been proven on both simulated traces and real world secure products. In summary scatter is a new side-channel technique offering a valuable alternative when the trace alignment represents an issue. Furthermore, scatter represents a suitable option for low-cost attacks, as the requirements in terms of equipment and expertise are significantly reduced.

Keywords

Side-channel Scatter Mutual information Pearson chi-squared 

References

  1. 1.
    Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against some attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 309–318. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44709-1_26CrossRefGoogle Scholar
  2. 2.
    Batina, L., Robshaw, M. (eds.): CHES 2014. LNCS, vol. 8731. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44709-3CrossRefzbMATHGoogle Scholar
  3. 3.
    Belgarric, P., Bhasin, S., Bruneau, N., Danger, J.-L., Debande, N., Guilley, S., Heuser, A., Najm, Z., Rioul, O.: Time-frequency analysis for second-order attacks. IACR Cryptology ePrint Archive 2016:772 (2016)Google Scholar
  4. 4.
    Jun, B., Rohatgi, P.: Is your design leaking keys? Efficient testing for side-channel leakage. In: RSA Conference (2013)Google Scholar
  5. 5.
    Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis: hiding your white-box designs is not enough. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 215–236. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53140-2_11CrossRefGoogle Scholar
  6. 6.
    Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28632-5_2CrossRefGoogle Scholar
  7. 7.
    Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36400-5_3CrossRefGoogle Scholar
  8. 8.
    Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence of hardware countermeasures. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 252–263. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44499-8_20CrossRefzbMATHGoogle Scholar
  9. 9.
    Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48059-5_25CrossRefGoogle Scholar
  10. 10.
    Coron, J.-S.: A new DPA countermeasure based on permutation tables. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 278–292. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85855-3_19CrossRefGoogle Scholar
  11. 11.
    Coron, J.-S., Goubin, L.: On Boolean and arithmetic masking against differential power analysis. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 231–237. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44499-8_18CrossRefzbMATHGoogle Scholar
  12. 12.
    Coron, J.-S., Kizhvatov, I.: An efficient method for random delay generation in embedded software. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 156–170. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04138-9_12CrossRefzbMATHGoogle Scholar
  13. 13.
    Debande, N., Souissi, Y., Abdelaziz Elaabid, M., Guilley, S., Danger, J.-L.: Wavelet transform based pre-processing for side channel analysis. In: 45th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 2012, Workshops Proceedings, Vancouver, BC, Canada, 1–5 December 2012, pp. 32–38. IEEE Computer Society (2012)Google Scholar
  14. 14.
    Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side channel attacks and leakage modeling. J. Cryptogr. Eng. 1(2), 123–144 (2011)CrossRefGoogle Scholar
  15. 15.
    Standaert, F.-X.: How (not) to use Welch’s T-test in side-channel security evaluations (2017)Google Scholar
  16. 16.
    Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine masking against higher-order side channel analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 262–280. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19574-7_18CrossRefGoogle Scholar
  17. 17.
    Genkin, D., Pachmanov, L., Pipman, I., Tromer, E.: Stealing keys from PCs using a radio: cheap electromagnetic attacks on windowed exponentiation. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 207–228. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48324-4_11CrossRefGoogle Scholar
  18. 18.
    Genkin, D., Pipman, I., Tromer, E.: Get your hands off my laptop: physical side-channel key-extraction attacks on PCs. In: Batina and Robshaw [2], pp. 242–260Google Scholar
  19. 19.
    Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth acoustic cryptanalysis. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 444–461. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44371-2_25CrossRefGoogle Scholar
  20. 20.
    Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85053-3_27CrossRefGoogle Scholar
  21. 21.
    Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer, Heidelberg (2006).  https://doi.org/10.1007/11894063_2CrossRefGoogle Scholar
  22. 22.
    Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A Testing methodology for side channel resistance validation. In: NIST Non Invasive Attack Testing Workshop (2011)Google Scholar
  23. 23.
    Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-68697-5_9CrossRefGoogle Scholar
  24. 24.
    Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48405-1_25CrossRefGoogle Scholar
  25. 25.
    Linge, Y., Dumas, C., Lambert-Lacroix, S.: Using the joint distributions of a cryptographic function in side channel analysis. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622, pp. 199–213. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10175-0_14CrossRefzbMATHGoogle Scholar
  26. 26.
    Liu, W., Wu, L., Zhang, X., Wang, A.: Wavelet-based noise reduction in power analysis attack. In: Tenth International Conference on Computational Intelligence and Security, Kunming, Yunnan, China, 15–16 November 2014, CIS 2014, pp. 405–409. IEEE Computer Society (2014)Google Scholar
  27. 27.
    Lomné, V., Prouff, E., Rivain, M., Roche, T., Thillard, A.: How to estimate the success rate of higher-order side-channel attacks. In: Batina and Robshaw [2], pp. 35–54Google Scholar
  28. 28.
    Mangard, S., Standaert, F.-X. (eds.): CHES 2010. LNCS, vol. 6225. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15031-9CrossRefzbMATHGoogle Scholar
  29. 29.
    Messerges, T.S.: Using second-order power analysis to attack DPA resistant software. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44499-8_19CrossRefGoogle Scholar
  30. 30.
    Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis collision attack. In: Mangard and Standaert [28], pp. 125–139CrossRefGoogle Scholar
  31. 31.
    Muijrers, R.A., van Woudenberg, J.G.J., Batina, L.: RAM: rapid alignment method. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 266–282. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-27257-8_17CrossRefGoogle Scholar
  32. 32.
    Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical second-order DPA attacks for masked smart card implementations of block ciphers. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192–207. Springer, Heidelberg (2006).  https://doi.org/10.1007/11605805_13CrossRefGoogle Scholar
  33. 33.
    Poussier, R., Standaert, F.-X., Grosso, V.: Simple key enumeration (and rank estimation) using histograms: an integrated approach. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 61–81. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53140-2_4CrossRefzbMATHGoogle Scholar
  34. 34.
    Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard and Standaert [28], pp. 413–427CrossRefGoogle Scholar
  36. 36.
    Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005).  https://doi.org/10.1007/11545262_3CrossRefGoogle Scholar
  37. 37.
    Tunstall, M., Benoit, O.: Efficient use of random delays in embedded software. In: Sauveron, D., Markantonakis, K., Bilas, A., Quisquater, J.-J. (eds.) WISTP 2007. LNCS, vol. 4462, pp. 27–38. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72354-7_3CrossRefGoogle Scholar
  38. 38.
    Tunstall, M., Whitnall, C., Oswald, E.: Masking tables—an underestimated security risk. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 425–444. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43933-3_22CrossRefGoogle Scholar
  39. 39.
    van Woudenberg, J.G.J., Witteman, M.F., Bakker, B.: Improving differential power analysis by elastic alignment. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 104–119. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19074-2_8CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.eshardMartillacFrance
  2. 2.Université de Limoges, XLIM-CNRSLimogesFrance

Personalised recommendations