Skip to main content

Emerging Techniques in the Preparation of Wound Care Products

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSBP))

Abstract

Numerous methods have been utilised to fabricate scaffolds with varying mechanical properties, suitable also to be used in wound care, for instance, conventional techniques, which include solvent casting and particle leaching, freeze-drying, thermally induced phase separation, gas foaming, and the sol–gel technique [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, et al. Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C. 2017;78(Suppl C):1246–62.

    Article  CAS  Google Scholar 

  2. Hong N, Yang GH, Lee J, Kim G. 3D bioprinting and its in vivo applications. J Biomed Mater Res B Appl Biomater. 2017.

    Google Scholar 

  3. Blaeser A, Campos DFD, Fischer H. 3D bioprinting of cell-laden hydrogels for advanced tissue engineering. Curr Opin Biomed Eng. 2017.

    Google Scholar 

  4. Shanjani Y, Pan C, Elomaa L, Yang Y. A novel bioprinting method and system for forming hybrid tissue engineering constructs. Biofabrication. 2015;7(4):045008.

    Article  CAS  Google Scholar 

  5. Kang H-W, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34(3):312–9.

    Article  CAS  Google Scholar 

  6. Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci. 2016;113(12):3179–84.

    Article  CAS  Google Scholar 

  7. Tabriz AG, Hermida MA, Leslie NR, Shu W. Three-dimensional bioprinting of complex cell laden alginate hydrogel structures. Biofabrication. 2015;7(4):045012.

    Article  Google Scholar 

  8. Auxenfans C, Fradette J, Lequeux C, Germain L, Kinikoglu B, Bechetoille N, et al. Evolution of three dimensional skin equivalent models reconstructed in vitro by tissue engineering. Eur J Dermatol. 2009;19(2):107–13.

    Google Scholar 

  9. Lee W, Lee V, Polio S, Keegan P, Lee JH, Fischer K, et al. On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Biotechnol Bioeng. 2010;105(6):1178–86.

    CAS  Google Scholar 

  10. Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN, et al. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods. 2014;20(6):473–84.

    Article  CAS  Google Scholar 

  11. Duan B. State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering. Ann Biomed Eng. 2016.

    Google Scholar 

  12. Sears NA, Seshadri DR, Dhavalikar PS, Cosgriff-Hernandez E. A review of three-dimensional printing in tissue engineering. Tissue Eng Part B. 2016;22(4):298–310.

    Article  CAS  Google Scholar 

  13. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–85.

    Article  CAS  Google Scholar 

  14. Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, et al. Skin tissue generation by laser cell printing. Biotechnol Bioeng. 2012;109(7):1855–63.

    Article  CAS  Google Scholar 

  15. Michael S, Sorg H, Peck C-T, Koch L, Deiwick A, Chichkov B, et al. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS ONE. 2013;8(3):e57741.

    Article  CAS  Google Scholar 

  16. Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, Yoo J, et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med. 2012;1(11):792–802.

    Article  CAS  Google Scholar 

  17. Wu Z, Su X, Xu Y, Kong B, Sun W, Mi S. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Sci Rep. 2016;6:24474.

    Article  CAS  Google Scholar 

  18. Singh D, Singh D, Han SS. 3D printing of scaffold for cells delivery: advances in skin tissue engineering. Polymers. 2016;8(1):19.

    Article  Google Scholar 

  19. Mayet N, Choonara YE, Kumar P, Tomar LK, Tyagi C, Du Toit LC, et al. A comprehensive review of advanced biopolymeric wound healing systems. J Pharm Sci. 2014;103(8):2211–30.

    Article  CAS  Google Scholar 

  20. Maver T, Smrke DM, Kurečič M, Gradišnik L, Maver U, Kleinschek KS. Combining 3D printing and electrospinning for preparation of pain reliving wound dressing materials. J Sol-Gel Sci Technol. in press.

    Google Scholar 

  21. Pillay V, Kumar P, Choonara YE. Integrated biomaterial composites for accelerated wound healing. In: Santambrogio L, editor. Biomaterials in regenerative medicine and the immune system. Cham: Springer International Publishing; 2015. p. 209–23.

    Chapter  Google Scholar 

  22. Ng WL, Wang S, Yeong WY, Naing MW. Skin bioprinting: impending reality or fantasy? Trends Biotechnol. 2016;34(9):689–99.

    Article  CAS  Google Scholar 

  23. Vijayavenkataraman S, Lu WF, Fuh JYH. 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes. Biofabrication. 2016;8(3):032001.

    Article  CAS  Google Scholar 

  24. Zhang Y, Lim C, Ramakrishna S, Huang Z-M. Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci—Mater Med. 2005;16(10):933–46.

    Article  CAS  Google Scholar 

  25. Liang D, Hsiao BS, Chu B. Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev. 2007;59:1392–412.

    Article  CAS  Google Scholar 

  26. Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008;29(13):1989–2006.

    Article  CAS  Google Scholar 

  27. Angammana CJ, Jayaram SH. Fundamentals of electrospinning and processing technologies. Part Sci Technol. 2015;34:72–82.

    Article  Google Scholar 

  28. Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28(3):325–47.

    Article  CAS  Google Scholar 

  29. Manja Kurečič MSS. Electrospinning: nanofibre production method. Tekstilec. 2013;56(1):4–12.

    Article  Google Scholar 

  30. Lee JM, Yeong WY. Design and printing strategies in 3D bioprinting of cell-hydrogels: a review. Adv Healthc Mater. 2016;5(22):2856–65.

    Article  CAS  Google Scholar 

  31. Fullerton JN, Frodsham GC, Day RM. 3D printing for the many, not the few. Nat Biotechnol. 2014;32(11):1086–7.

    Article  CAS  Google Scholar 

  32. Yoon H, Lee J-S, Yim H, Kim G, Chun W. Development of cell-laden 3D scaffolds for efficient engineered skin substitutes by collagen gelation. RSC Adv. 2016;6(26):21439–47.

    Article  CAS  Google Scholar 

  33. Rees A, Powell LC, Chinga-Carrasco G, Gethin DT, Syverud K, Hill KE, et al. 3D bioprinting of carboxymethylated-periodate oxidized nanocellulose constructs for wound dressing applications. Biomed Res Int. 2015;2015:7.

    Article  Google Scholar 

  34. Mostafalu P, Amugothu S, Tamayol A, Bagherifard S, Akbari M, Dokmeci MR, et al., editors. Smart flexible wound dressing with wireless drug delivery. In: 2015 IEEE biomedical circuits and systems conference (BioCAS); 2015 Oct 22–24.

    Google Scholar 

  35. Goyanes A, Det-Amornrat U, Wang J, Basit AW, Gaisford S. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Controlled Release. 2016;234:41–8.

    Article  CAS  Google Scholar 

  36. Mostafalu P, Lenk W, Dokmeci MR, Ziaie B, Khademhosseini A, Sonkusale SR. Wireless flexible smart bandage for continuous monitoring of wound oxygenation. IEEE Trans Biomed Circuits Syst. 2015;9(5):670–7.

    Article  Google Scholar 

  37. Petrik S, Maly M. Production nozzle-less electrospinning nanofiber technology. In: MRS Proceedings. 2009. p. 1240.

    Google Scholar 

  38. Roemhild K, Niemz F, Mohan T, Hribernik S, Kurecic M, Ganser C, et al. The cellulose source matters-hollow semi spheres or fibers by needleless electrospinning. Macromol Mater Eng. 2016;301:42–7.

    Article  CAS  Google Scholar 

  39. Abrigo M, McArthur SL, Kingshott P. Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects. Macromol Biosci. 2014;14(6):772–92.

    Article  CAS  Google Scholar 

  40. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123(24):4195–200.

    Article  CAS  Google Scholar 

  41. Mouw JK, Ou G, Weaver VM. Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol. 2014;15(12):771–85.

    Article  CAS  Google Scholar 

  42. Dubsky M, Kubinova S, Sirc J, Voska L, Zajicek R, Zajicova A, et al. Nanofibers prepared by needleless electrospinning technology as scaffolds for wound healing. J Mater Sci—Mater Med. 2012;23(4):931–41.

    Article  CAS  Google Scholar 

  43. Rho KS, Jeong L, Lee G, Seo B-M, Park YJ, Hong S-D, et al. Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials. 2006;27(8):1452–61.

    Article  CAS  Google Scholar 

  44. Choi JS, Kim HS, Yoo HS. Electrospinning strategies of drug-incorporated nanofibrous mats for wound recovery. Drug Deliv Transl Res. 2015;5(2):137–45.

    Article  CAS  Google Scholar 

  45. Arslan A, Simsek M, Aldemir SD, Kazaroglu NM, Gumusderelioglu M. Honey-based PET or PET/chitosan fibrous wound dressings: effect of honey on electrospinning process. J Biomater Sci Polym Ed. 2014;25(10):999–1012.

    Article  CAS  Google Scholar 

  46. He T, Wang J, Huang P, Zeng B, Li H, Cao Q, et al. Electrospinning polyvinylidene fluoride fibrous membranes containing anti-bacterial drugs used as wound dressing. Colloids Surf, B. 2015;130:278–86.

    Article  CAS  Google Scholar 

  47. Lee KY, Jeong L, Kang YO, Lee SJ, Park WH. Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev. 2009;61(12):1020–32.

    Article  CAS  Google Scholar 

  48. Filion TM, Kutikov A, Song J. Chemically modified cellulose fibrous meshes for use as tissue engineering scaffolds. Bioorg Med Chem Lett. 2011;21:5067–70.

    Article  CAS  Google Scholar 

  49. Boland ED, Telemeco TA, Simpson DG, Wnek GE, Bowlin GL. Utilizing acid pretreatment and electrospinning to improve biocompatibility of poly(glycolic acid) for tissue engineering. J Biomed Mater Res B Appl Biomater. 2004;71:144–52.

    Article  Google Scholar 

  50. Salalha W, Kuhn J, Dror Y, Zussman E. Encapsulation of bacteria and viruses in electrospun nanofibres. Nanotechnology. 2006;17(18):4675.

    Article  CAS  Google Scholar 

  51. Rzayev ZM, Salimi K, Eğri Ö, Pişkin E. Functional copolymer/organo-MMT nanoarchitectures. XIX. Nanofabrication and characterization of poly (MA-alt-1-octadecene)-g-PLA layered silicate nanocomposites with nanoporous core–shell morphology. Polym Adv Technol. 2014;25(3):294–306.

    Article  CAS  Google Scholar 

  52. Martínez-Abad A, Sanchez G, Lagaron J, Ocio M. Influence of speciation in the release profiles and antimicrobial performance of electrospun ethylene vinyl alcohol copolymer (EVOH) fibers containing ionic silver ions and silver nanoparticles. Colloid Polym Sci. 2013;291(6):1381–92.

    Article  Google Scholar 

  53. Li W, Wang J, Chi H, Wei G, Zhang J, Dai L. Preparation and antibacterial activity of polyvinyl alcohol/regenerated silk fibroin composite fibers containing Ag nanoparticles. J Appl Polym Sci. 2012;123(1):20–5.

    Article  CAS  Google Scholar 

  54. Hafez EE, El-Aassar M, Khalil KA, Al-Deyab SS, Taha TH. Poly(acrylonitrile-co-methyl methacrylate) nanofibers grafted with bio-nanosilver particles as antimicrobial against multidrug resistant bacteria. Afr J Biotech. 2011;10(84):19658–69.

    CAS  Google Scholar 

  55. Li H, Li C, Zhang C, Bai J, Xu T, Sun W. Well‐dispersed copper nanorods grown on the surface‐functionalized PAN fibers and its antibacterial activity. J Appl Polym Sci. 2014;131(21).

    Google Scholar 

  56. Gupta KK, Mishra PK, Srivastava P, Gangwar M, Nath G, Maiti P. Hydrothermal in situ preparation of TiO2 particles onto poly (lactic acid) electrospun nanofibres. Appl Surf Sci. 2013;264:375–82.

    Article  CAS  Google Scholar 

  57. Anitha S, Brabu B, Thiruvadigal DJ, Gopalakrishnan C, Natarajan T. Optical, bactericidal and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO. Carbohyd Polym. 2013;97(2):856–63.

    Article  CAS  Google Scholar 

  58. Zheng F, Wang S, Wen S, Shen M, Zhu M, Shi X. Characterization and antibacterial activity of amoxicillin-loaded electrospun nano-hydroxyapatite/poly (lactic-co-glycolic acid) composite nanofibers. Biomaterials. 2013;34(4):1402–12.

    Article  CAS  Google Scholar 

  59. Sirc J, Kubinova S, Hobzova R, Stranska D, Kozlik P, Bosakova Z, et al. Controlled gentamicin release from multi-layered electrospun nanofibrous structures of various thicknesses. Int J Nanomed. 2012;7:5315–25.

    Article  CAS  Google Scholar 

  60. El-Newehy MH, Al-Deyab SS, Kenawy E-R, Abdel-Megeed A. Fabrication of electrospun antimicrobial nanofibers containing metronidazole using nanospider technology. Fibers Polym. 2012;13(6):709–17.

    Article  CAS  Google Scholar 

  61. Tian Zhoua XM, Suna J. Development and properties of electrospun collagen-chitosan nanofibrous membranes as skin wound healing materials. J Fiber Bioeng Inform. 2014;7(3):319–25.

    Google Scholar 

  62. Macocinschi D, Filip D, Paslaru E, Munteanu BS, Dumitriu RP, Pricope GM, et al. Polyurethane–extracellular matrix/silver bionanocomposites for urinary catheters. J Bioact Compatible Polym. 2015;30(1):99–113.

    Article  Google Scholar 

  63. Toncheva A, Spasova M, Paneva D, Manolova N, Rashkov I. Drug-loaded electrospun polylactide bundles. J Bioact Compatible Polym. 2011;26(2):161–72.

    Article  CAS  Google Scholar 

  64. Sumitha M, Shalumon K, Sreeja V, Jayakumar R, Nair SV, Menon D. Biocompatible and antibacterial nanofibrous poly (ϵ-caprolactone)-nanosilver composite scaffolds for tissue engineering applications. J Macromol Sci Part A. 2012;49(2):131–8.

    Article  CAS  Google Scholar 

  65. Manjumeena R, Elakkiya T, Duraibabu D, Feroze Ahamed A, Kalaichelvan P, Venkatesan R. ‘Green’ biocompatible organic–inorganic hybrid electrospun nanofibers for potential biomedical applications. J Biomater Appl. 2015;29(7):1039–55.

    Article  CAS  Google Scholar 

  66. Yohe ST, Herrera VL, Colson YL, Grinstaff MW. 3D superhydrophobic electrospun meshes as reinforcement materials for sustained local drug delivery against colorectal cancer cells. J Controlled Release. 2012;162(1):92–101.

    Article  CAS  Google Scholar 

  67. Wang H, Li M, Hu J, Wang C, Xu S, Han CC. Multiple targeted drugs carrying biodegradable membrane barrier: anti-adhesion, hemostasis, and anti-infection. Biomacromol. 2013;14(4):954–61.

    Article  CAS  Google Scholar 

  68. Immich APS, Arias ML, Carreras N, Boemo RL, Tornero JA. Drug delivery systems using sandwich configurations of electrospun poly (lactic acid) nanofiber membranes and ibuprofen. Mater Sci Eng, C. 2013;33(7):4002–8.

    Article  CAS  Google Scholar 

  69. Paaver U, Tamm I, Laidmae I, Lust A, Kirsimae K, Veski P, et al. Soluplus graft copolymer: potential novel carrier polymer in electrospinning of nanofibrous drug delivery systems for wound therapy. Biomed Res Int. 2014;2014:789765.

    Article  Google Scholar 

  70. Saraf A, Baggett LS, Raphael RM, Kasper FK, Mikos AG. Regulated non-viral gene delivery from coaxial electrospun fiber mesh scaffolds. J Controlled Release. 2010;143(1):95–103.

    Article  CAS  Google Scholar 

  71. Ji W, Yang F, Van den Beucken JJ, Bian Z, Fan M, Chen Z, et al. Fibrous scaffolds loaded with protein prepared by blend or coaxial electrospinning. Acta Biomater. 2010;6(11):4199–207.

    Article  CAS  Google Scholar 

  72. Mickova A, Buzgo M, Benada O, Rampichova M, Fisar Z, Filova E, et al. Core/shell nanofibers with embedded liposomes as a drug delivery system. Biomacromol. 2012;13(4):952–62.

    Article  CAS  Google Scholar 

  73. Moreno I, González-González V, Romero-García J. Control release of lactate dehydrogenase encapsulated in poly (vinyl alcohol) nanofibers via electrospinning. Eur Polymer J. 2011;47(6):1264–72.

    Article  CAS  Google Scholar 

  74. Greer N, Foman NA, MacDonald R, et al. Advanced wound care therapies for nonhealing diabetic, venous, and arterial ulcers: a systematic review. Ann Intern Med. 2013;159(8):532–42.

    Article  Google Scholar 

  75. Mou H, Brazauskas K, Rajagopal J. Personalized medicine for cystic fibrosis: establishing human model systems. Pediatr Pulmonol. 2015;50(Suppl 40):S14–23.

    Article  Google Scholar 

  76. Yang H, Zhang W, Huang C, Zhou W, Yao Y, Wang Z, et al. A novel systems pharmacology model for herbal medicine injection: a case using reduning injection. BMC Complement Altern Med. 2014;14:430.

    Article  Google Scholar 

  77. Maver T, Maver U, Gradisnik L, Kurecic M, Hribernik S, Smrke D, et al. Biokompatibilnostne studije materialov, vkljucenih v vecplasten material za oskrbo ran z vkljucenima dvema protibolecinskima zdravilnima ucinkovinama. Celostna oskrba rane–razlicne etiologije. 2016. p. 161–7.

    Google Scholar 

  78. Maver T, Maver U, Mostegel F, Grieser T, Spirk S, Smrke D, et al. Cellulose based thin films as a platform for drug release studies to mimick wound dressing materials. Cellulose. 2015;22:749–61.

    Article  CAS  Google Scholar 

  79. White R. Wound dressings and other topical treatment modalities in bioburden control. J Wound Care. 2011;20(9):431–9.

    Article  CAS  Google Scholar 

  80. World Wound Care Markets 2011. Kalorama; 2011. [Available from: http://www.kaloramainformation.com/Wound-Care-6422062/.

  81. Boateng JS, Matthews KH, Stevens HNE, Eccleston GM. Wound healing dressings and drug delivery systems: a review. J Pharm Sci. 2008;97(8):2892–923.

    Article  CAS  Google Scholar 

  82. Maver T, Gradišnik L, Kurečič M, Hribernik S, Smrke DM, Maver U, et al. Layering of different materials to achieve optimal conditions for treatment of painful wounds. Int J Pharm. 2017;529(1–2):576–88.

    Article  CAS  Google Scholar 

  83. Maver T, Stana-Kleinschek K, Persin Z, Maver U. Functionalization of afm tips for use in force spectroscopy between polymers and model surfaces. Mater Technol. 2011;45(3):205–11.

    CAS  Google Scholar 

  84. Maver T, Hribernik S, Mohan T, Smrke DM, Maver U, Stana-Kleinschek K. Functional wound dressing materials with highly tunable drug release properties. RSC Adv. 2015;5(95):77873–84.

    Article  CAS  Google Scholar 

  85. Maver U, Maver T, Znidarsic A, Persin Z, Gaberscek M, Stana-Kleinschek K. Use of afm force spectroscopy for assessment of polymer response to conditions similar to the wound, during healing. Mater Technol. 2011;45(3):259–63.

    CAS  Google Scholar 

  86. Kienberger F, Ebner A, Gruber HJ, Hinterdorfer P. Molecular recognition imaging and force spectroscopy of single biomolecules. Acc Chem Res. 2006;39(1):29–36.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Maver .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maver, T., Maver, U., Pivec, T., Kurečič, M., Persin, Z., Stana Kleinschek, K. (2018). Emerging Techniques in the Preparation of Wound Care Products. In: Bioactive Polysaccharide Materials for Modern Wound Healing. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-89608-3_3

Download citation

Publish with us

Policies and ethics