Skip to main content

Dynamic Definition of Machine Tool Feed Drive Models in Advanced Machine Tools

  • Conference paper
  • First Online:
Proceedings of 3rd International Conference on the Industry 4.0 Model for Advanced Manufacturing (AMP 2018)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

Machine tools in actual construction, being related to the trend towards to machine tools of high productivity and increased precision and having in view the context of transition to Industry 4.0, have to be studied deeply in the stage of conception and also in that of exploiting. For both situations, the modeling and simulation of the machine tool regarded as a mechatronic system represent methods of analysis, assessment, and optimization for its improvement.

This work proposes the approaching the subject from the point of view of modeling and simulation of one assembly of the machine tool that proves one of the most sensitive kinematic structure responsible for the machine tool precision. The modeling, either Rigid Body Simulation, Digital Block Simulation, Finite Element Modeling or combinations types, implies a concrete and accurate definition of the dynamic parameters stiffness, damping, and friction.

Some mathematical approaches for determining these parameters are presented. Also, some product catalog values and relations coming from the engineering and research experience applied to feed drive components and also to the whole kinematic chain are given. Furthermore, some practical testing and calculation methods are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmadi, K., Ahmadian, H.: Modelling machine tool dynamics using a distributed parameter tool–holder joint interface. Int. J. Mach. Tools Manuf 47(12–13), 1916–1928 (2007)

    Article  Google Scholar 

  2. Butcher, E.A., Nindujarla, P., Bueler, E.: Stability of up-and down-milling using Chebyshev collocation method. In: ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 841–850. American Society of Mechanical Engineers, January 2005

    Google Scholar 

  3. Constantin, G., Ghionea, A.: Feed kinematic chain of the bridge in Gantry machine-tools. Archiwum Technologii Maszyn i Automatyzacji 28(2), 75–84 (2008)

    Google Scholar 

  4. Constantin, G., Predincea, N.: Aspectes regarding optimal design of machine tool feed drives. Proc. Manuf. Syst. 10(4), 171 (2015)

    Google Scholar 

  5. Copani, G., Molinari Tosatti, L., Lay, G., Schroeter, M., Bueno, R.: New business models diffusion and trends in European machine tool industry. In: Proceedings of 40th CIRP International Manufacturing Systems Seminar, May 2007

    Google Scholar 

  6. Erkorkmaz, K., Yeung, C.H., Altintas, Y.: Virtual CNC system. Part II. High speed contouring application. Int. J. Mach. Tools Manuf 46(10), 1124–1138 (2006)

    Article  Google Scholar 

  7. Fleischer, J., Broos, A.: Parameteroptimierung bei Werkzeugmaschinen–Anwendungsmöglichkeiten und Potentiale. Weimarer Optimierungs-und Stochastiktage, 1 (2004)

    Google Scholar 

  8. Fredin, J.: Modelling, simulation and optimisation of a machine tool (Doctoral dissertation, Blekinge Institute of Technology) (2009)

    Google Scholar 

  9. Groche, P., Hofmann, T.: Einfluss des dynamischen Übertragungsverhaltens von Stößelführungen auf die Arbeitsgenauigkeit von Umformpressen. EFB Hannover (2005)

    Google Scholar 

  10. HIWIN Linear Guideway. http://ruchservomotor.com/Pdf_english/H_L_G_(Low).pdf

  11. HIWIN Ballscrews. Technical Information. https://www.hiwin.com/pdf/ballscrews.pdf

  12. INA-FAG, Schaeffler Technologies, Super Precison Bearings (2006). https://www.schaeffler.com/remotemedien/media/_shared_media/08_media_library/01_publications/schaeffler_2/catalogue_1/downloads_6/sp1_de_en.pdf

  13. Knaapen, R.J.W., Kodde, L., de Kraker, A.: Experimental Determination of Rolling Element Bearing Stiffness. Technische Universiteit Eindhoven, Eindhoven (1997)

    Google Scholar 

  14. Krȁmer, E.: Dynamics of Rotors and Foundation. Springer, Berlin (1993)

    Book  Google Scholar 

  15. Lee, W.J., Kim, S.I.: Joint stiffness identification of an ultra-precision machine for machining large-surface micro-features. Int. J. Precis. Eng. Manuf. 10(5), 115–121 (2009)

    Article  Google Scholar 

  16. Maglie, P.: Parallelization of Design and Simulation, vol. 683. ETH Zurich, Zürich (2012)

    Google Scholar 

  17. Palgrem, A.: Les Roulments, Description, Theorie, Applications (Bearings, Description, Theory, Applications). SKF, Paris (1967)

    Google Scholar 

  18. Pandilov, Z., Milecki, A., Nowak, A., Górski, F., Grajewski, D., Ciglar, D., Klaić, M., Mulc, T.: Virtual modelling and simulation of a CNC machine feed drive system. Trans. FAMENA 39(4), 37–54 (2015)

    Google Scholar 

  19. Riba, R.C., Pérez, R.R., Ahuett, G.H., Jorge, L.S.A., Domínguez, M.D., Molina, G.A.: Metrics for evaluating design of reconfigurable machine tools. In: International Conference on Cooperative Design, Visualization and Engineering, pp. 234–241. Springer, Berlin, Heidelberg, September 2006

    Google Scholar 

  20. Schlecht, B.: Maschinenelemente: Getriebe-Verzahnungen-Legerungen. Pearson Studium, ein Imprint von Pearson Education (2010)

    Google Scholar 

  21. Servomech, Ball screws and nuts, Catalogue (2010). http://www.servomech.it/Pdf/prodotti/SERVOMECH-ball-screws-and-nuts-catalogue.pdf

  22. Slocum, A.: Precision Machine Design. Society of Manufacturing Engineers, Dearborn (1994)

    Google Scholar 

  23. Steinhilper, W., Sauer, B., Feldhusen, J.: Konstruktionselemente des Maschinenbaus 1: Grundlagen der Berechnung und Gestaltung von Maschinenelementen. Springer, Heidelberg (2008)

    Book  Google Scholar 

  24. Stejskal, T., Svetlík, J., Dovica, M., Demeč, P., Kráľ, J.: Measurement of static stiffness after motion on a three-axis CNC milling table. Appl. Sci. 8(1), 15 (2017)

    Article  Google Scholar 

  25. Stratulat, F., Ionescu, F., Constantin, G.: Dynamic evaluation of a linear axis in milling using modelling and simulation environment. In: Proceedings of the International Conference on Manufacturing Systems, ICMaS, pp. 99–104 (2007)

    Google Scholar 

  26. Thurneysen, M., Demaurex, G.: Modalanalyse von komplexen Maschinen, praktische Ueberpruefung. In: Symposium Simulation von Werkzeugmaschinen. IWF/inspire, ETHZ (2008)

    Google Scholar 

  27. Wang, D., Lu, Y., Zhang, T., Wang, K., Rinoshika, A.: Effect of stiffness of rolling joints on the dynamic characteristic of ball screw feed systems in a milling machine. Shock Vib. 2015, 11 (2015)

    Google Scholar 

  28. Xian-chun, S., Jian, S., Ming-yuan, C., Yan-feng, L.: Research on axial stiffness of the double-nut ball screw mechanism. In: Proceedings of the 1st International Conference on Mechanical Engineering and Material Science. Atlantis Press, December 2012

    Google Scholar 

  29. Zaeh, M., Siedl, D.: A new method for simulation of machining performance by integrating finite element and multi-body simulation for machine tools. CIRP Ann. Manuf. Technol. 56(1), 383–386 (2007)

    Article  Google Scholar 

  30. Zaghbani, I., Songmene, V.: Estimation of machine-tool dynamic parameters during machining operation through operational modal analysis. Int. J. Mach. Tools Manuf 49(12–13), 947–957 (2009)

    Article  Google Scholar 

  31. Zhang, Y.M., Xie, Z.K., Liu, Y.X.: Modeling and calculation of dynamic performances of NC machine tool considering linear rolling guideway. Appl. Mech. Mater. 16, 510–514 (2009)

    Article  Google Scholar 

  32. Zhu, J., Zhang, T., Li, X.: Dynamic characteristic analysis of ball screw feed system based on stiffness characteristic of mechanical joints. J. Mech. Eng. 51, 72–82 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Constantin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Constantin, G. (2018). Dynamic Definition of Machine Tool Feed Drive Models in Advanced Machine Tools. In: Ni, J., Majstorovic, V., Djurdjanovic, D. (eds) Proceedings of 3rd International Conference on the Industry 4.0 Model for Advanced Manufacturing. AMP 2018. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-89563-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89563-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89562-8

  • Online ISBN: 978-3-319-89563-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics