Skip to main content

Geometric Inspection Planning as a Key Element in Industry 4.0

  • Conference paper
  • First Online:
Proceedings of 3rd International Conference on the Industry 4.0 Model for Advanced Manufacturing (AMP 2018)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

In the context of Industry 4.0, inspection is fundamental: if manufacturing opens the loop by converting digital parts into physical parts, inspection closes the loop by turning physical parts into information. The difference between an effective and a useless inspection is its planning. A well-planned inspection will provide the required data and information without wasting time and money.

In this work, we discuss the current role of geometric inspection planning, showing that not only it is a must for Industry 4.0, in order to guarantee a good link between the physical and digital world, but it can take advantage of this framework to improve itself. Methodologies for optimal inspection planning have been already conceptually proved and are just waiting for the required amount of data and information to be available, and Industry 4.0 will be the enabler to fill this gap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anagnostakis, D., Ritchie, J., Lim, T., Sivanathan, A., Dewar, R., Sung, R., Bosché, F., Carozza, L.: Knowledge capture in CMM inspection planning: barriers and challenges. Procedia CIRP 52, 216–221 (2016). https://doi.org/10.1016/j.procir.2016.07.045

    Article  Google Scholar 

  2. Ascione, R., Moroni, G., PetrĂ², S., Romano, D.: Adaptive inspection in coordinate metrology based on kriging models. Precis. Eng. 37(1), 44–60 (2013). https://doi.org/10.1016/j.precisioneng.2012.06.006

    Article  Google Scholar 

  3. Badar, M.A., Raman, S., Pulat, P.S.: Intelligent search-based selection of sample points for straightness and flatness estimation. J. Manuf. Sci. Eng. 125(2), 263–271 (2003). https://doi.org/10.1115/1.1556859

    Article  Google Scholar 

  4. Badar, M.A., Raman, S., Pulat, P.S.: Experimental verification of manufacturing error pattern and its utilization in form tolerance sampling. Int. J. Mach. Tool Manufact. 45(1), 63–73 (2005). https://doi.org/10.1016/j.ijmachtools.2004.06.017

    Article  Google Scholar 

  5. Badar, M.A., Raman, S., Pulat, P.S., Shehab, R.L.: Experimental analysis of search-based selection of sample points for straightness and flatness estimation. J. Manuf. Sci. Eng. 127(1), 96–103 (2005). https://doi.org/10.1115/1.1828051

    Article  Google Scholar 

  6. Bosch-Mauchand, M., Siadat, A., Perry, N., Bernard, A.: VCS: value chains simulator, a tool for value analysis of manufacturing enterprise processes (a value-based decision support tool). J. Intell. Manuf. 23(4), 1389–1402 (2012). https://doi.org/10.1007/s10845-010-0452-x

    Article  Google Scholar 

  7. Capello, E., Semeraro, Q.: The harmonic fitting method for the assessment of the substitute geometry estimate error. Part I: 2D and 3D theory. Int. J. Mach. Tool Manufact. 41(8), 1071–1102 (2001). https://doi.org/10.1016/S0890-6955(01)00020-7

    Article  Google Scholar 

  8. Capello, E., Semeraro, Q.: The harmonic fitting method for the assessment of the substitute geometry estimate error. Part II: statistical approach, machining process analysis and inspection plan optimisation. Int. J. Mach. Tool Manufact. 41(8), 1103–1129 (2001). https://doi.org/10.1016/S0890-6955(01)00019-0

    Article  Google Scholar 

  9. Chan, F.M.M., King, T.G., Stout, K.J.: The influence of sampling strategy on a circular feature in coordinate measurements. Measurement 19(2), 73–81 (1996). https://doi.org/10.1016/S0263-2241(96)00067-X

    Article  Google Scholar 

  10. Chua, Z., Ahn, I., Moon, S.: Process monitoring and inspection systems in metal additive manufacturing: status and applications. Int. J. Precis. Eng. Manuf. Green Technol. 4(2), 235–245 (2017). https://doi.org/10.1007/s40684-017-0029-7

    Article  Google Scholar 

  11. Clark, D., Sharples, S., Wright, D.: Development of online inspection for additive manufacturing products. Insight Non Destr. Test Cond. Monit. 53(11), 610–613 (2011). https://doi.org/10.1784/insi.2011.53.11.610

    Article  Google Scholar 

  12. Colosimo, B.M., Gutierrez Moya, E., Moroni, G., PetrĂ², S.: Statistical sampling strategies for geometric tolerance inspection by CMM. Econ. Qual. Contr. 23(1), 109–121 (2008). https://doi.org/10.1515/EQC.2008.109

    Article  MathSciNet  MATH  Google Scholar 

  13. Colosimo, B.M., Moroni, G., PetrĂ², S.: A tolerance interval based criterion for optimizing discrete point sampling strategies. Precis. Eng. 34(4), 745–754 (2010). https://doi.org/10.1016/j.precisioneng.2010.04.004

    Article  Google Scholar 

  14. Denti, P., Dondossola, G., Fiorentini, F., Moroni, G., Palezzato, P., Semeraro, Q., Tealdi, A.: CAIP: computer aided inspection planning. In: Proceedings of the 5th IMCC-International Manufacturing Conference in China, pp. 1–5 (1991)

    Google Scholar 

  15. Edgeworth, R., Wilhelm, R.G.: Adaptive sampling for coordinate metrology. Precis. Eng. 23(3), 144–154 (1999). https://doi.org/10.1016/S0141-6359(99)00004-5

    Article  Google Scholar 

  16. Emmer, C., Pfouga, A., Stjepandic, J., Tiringer, H.: Novel approach with 3D measurement data management for industry 4.0. Adv. Transdiscipl. Eng. 5, 906–913 (2017). https://doi.org/10.3233/978-1-61499-779-5-906. Conference of 24th ISPE Inc. International Conference on Transdisciplinary Engineering, TE 2017; Conference Date: 10 July 2017 Through 14 July 2017; Conference Code:128611

  17. Etienne, A., Dantan, J.Y., Qureshi, J., Siadat, A.: Variation management by functional tolerance allocation and manufacturing process selection. Int. J. Interact. Des. Manuf. 2(4), 207–218 (2008). https://doi.org/10.1007/s12008-008-0055-3

    Article  Google Scholar 

  18. Etienne, A., Mirdamadi, S., Mohammadi, M., Babaeizadeh Malmiry, R., Antoine, J.F., Siadat, A., Dantan, J.Y., Tavakkoli, R., Martin, P.: Cost engineering for variation management during the product and process development. Int. J. Interact. Des. Manuf., 1–12 (2016, in press). https://doi.org/10.1007/s12008-016-0318-3

  19. Flack, D.: CMM measurement strategies. Technical report PDB: 2771, National Physical Laboratory (2014)

    Google Scholar 

  20. Flack, D.: CMM probing. Technical Report PDB: 2773, National Physical Laboratory (2014)

    Google Scholar 

  21. Grieco, A., Moroni, G., Nucci, F., Polini, W., Rasella, M.: Measuring points visiting sequence in CMM path planning. In: Proceedings of the 2nd CIRP International Seminar on Intelligence Computation in Manufacturing Engineering, pp. 485–490 (2000)

    Google Scholar 

  22. He, G., Huang, X., Ma, W., Sang, Y., Yu, G.: CAD-based measurement planning strategy of complex surface for five axes on machine verification. Int. J. Adv. Manuf. Technol. 91(5–8), 2101–2111 (2017). https://doi.org/10.1007/s00170-016-9932-2

    Article  Google Scholar 

  23. Hwang, C.Y., Tsai, C.Y., Chang, C.: Efficient inspection planning for coordinate measuring machines. Int. J. Adv. Manuf. Technol. 23(9–10), 732–742 (2004)

    Article  Google Scholar 

  24. International Organization for Standardization: ISO 14660-1: Geometrical product specifications (GPS) - geometrical features - part 1: General terms and definitions (1999)

    Google Scholar 

  25. International Organization for Standardization: ISO 10360-1: Geometrical Product Specifications (GPS) - Acceptance and reverification tests for coordinate measuring machines (CMM) - Part 1: Vocabulary (2000)

    Google Scholar 

  26. International Organization for Standardization: ISO/TS 12781-2: Geometrical Product Specifications (GPS) - Flatness - Part 2: Specification operators (2003)

    Google Scholar 

  27. International Organization for Standardization: ISO 12180-2: Geometrical Product Specifications (GPS) - Cylindricity - Part 2: Specification operators (2011)

    Google Scholar 

  28. International Organization for Standardization: ISO 12181-2: Geometrical Product Specifications (GPS) - Roundness - Part 2: Specification operators (2011)

    Google Scholar 

  29. International Organization for Standardization: ISO 12780-2: Geometrical Product Specifications (GPS) - Straightness - Part 2: Specification operators (2011)

    Google Scholar 

  30. International Organization for Standardization: ISO 12781-2: Geometrical Product Specifications (GPS) - Flatness - Part 2: Specification operators (2011)

    Google Scholar 

  31. International Organization for Standardization: ISO 17450-2: Geometrical product specifications (GPS) - general concepts - part 2: Basic tenets, specifications, operators and uncertainties (2012)

    Google Scholar 

  32. International Organization for Standardization: ISO 14253-1: Geometrical product specifications (GPS) - inspection by measurement of workpieces and measuring equipment - part 1: Decision rules for proving conformance or nonconformance with specifications (2013)

    Google Scholar 

  33. International Organization for Standardization: ISO 14238: Geometrical product specifications (GPS) - Matrix model (2015)

    Google Scholar 

  34. International Organization for Standardization: ISO 14405-1: Geometrical product specifications (GPS) - Dimensional tolerancing - Part 1: Linear sizes (2016)

    Google Scholar 

  35. International Organization for Standardization: ISO 1101: Geometrical product specifications (GPS) - Geometrical tolerancing - Tolerances of form, orientation, location and run-out (2017)

    Google Scholar 

  36. ISO/IEC: ISO/IEC GUIDE 99:2007(E/F): International vocabulary of metrology - basic and general concepts and associated terms (VIM) (2007)

    Google Scholar 

  37. Jia, Z.Y., Ma, J.W., Wang, F.J., Ding, Y.M.: Investigation of a measurement scheme based on IGES. Measurement 47(1), 658–668 (2014). https://doi.org/10.1016/j.measurement.2013.09.017

    Article  Google Scholar 

  38. Kamrani, A., Abouel Nasr, E., Al-Ahmari, A., Abdulhameed, O., Mian, S.: Feature-based design approach for integrated CAD and computer-aided inspection planning. Int. J. Adv. Manuf. Technol. 76(9–12), 2159–2183 (2014). https://doi.org/10.1007/s00170-014-6396-0

    Article  Google Scholar 

  39. Kim, W.S., Raman, S.: On the selection of flatness measurement points in coordinate measuring machine inspection. Int. J. Mach. Tool Manufact. 40(3), 427–443 (2000)

    Article  Google Scholar 

  40. Kruth, J., Bartscher, M., Carmignato, S., Schmitt, R., De Chiffre, L., Weckenmann, A.: Computed tomography for dimensional metrology. CIRP Ann. - Manuf. Technol. 60(2), 821–842 (2011). https://doi.org/10.1016/j.cirp.2011.05.006

    Article  Google Scholar 

  41. Kunzmann, H., Pfeifer, T., Schmitt, R., Schwenke, H., Weckenmann, A.: Productive metrology - adding value to manufacture. CIRP Ann. - Manuf. Technol. 54(2), 155–168 (2005). https://doi.org/10.1016/S0007-8506(07)60024-9

    Article  Google Scholar 

  42. Lalehpour, A., Barari, A.: Developing skin model in coordinate metrology using a finite element method. Measurement 109, 149–159 (2017). https://doi.org/10.1016/j.measurement.2017.05.056

    Article  Google Scholar 

  43. Lee, G., Mou, J., Shen, Y.: Sampling strategy design for dimensional measurement of geometric features using coordinate measuring machine. Int. J. Mach. Tool Manufact. 37(7), 917–934 (1997). https://doi.org/10.1016/S0890-6955(96)00096-X

    Article  Google Scholar 

  44. Lu, Q., Wong, C.: Additive manufacturing process monitoring and control by non-destructive testing techniques: challenges and in-process monitoring. Virtual Phys. Prototyping 13(2), 39–48 (2018). https://doi.org/10.1080/17452759.2017.1351201

    Article  Google Scholar 

  45. Majstorovic, V., Stojadinovic, S., Sibalija, T.: Development of a knowledge base for the planning of prismatic parts inspection on CMM. Acta IMEKO 4(2), 10–17 (2015)

    Article  Google Scholar 

  46. Majstorovic, V., Stojadinovic, S., Zivkovic, S., Djurdjanovic, D., Jakovljevic, Z., Gligorijevic, N.: Cyber-physical manufacturing metrology model (CPM3) for sculptured surfaces - turbine blade application. Procedia CIRP 63, 658–663 (2017). https://doi.org/10.1016/j.procir.2017.03.093

    Article  Google Scholar 

  47. Mansour, G., Tsagaris, A., Mansour, M.: Intelligent interaction with CMM. Int. J. Mech. Mech. Eng. 15(3), 53–58 (2015)

    Google Scholar 

  48. Martìnez-Pellitero, S., Barreiro, J., Cuesta, E., FernĂ¡ndez-Abia, A.: KBE rules oriented to resources management in coordinates inspection by contact. J. Manuf. Syst. 37, 149–163 (2015). https://doi.org/10.1016/j.jmsy.2015.07.005

    Article  Google Scholar 

  49. MartĂ­nez-Pellitero, S., Barreiro, J., Cuesta, E., FernĂ¡ndez-Abia, A.: Knowledge base model for automatic probe orientation and configuration planning with CMMs. Rob Comput. Integr. Manuf. 49, 285–300 (2018). https://doi.org/10.1016/j.rcim.2017.08.012

    Article  Google Scholar 

  50. Martins, T., Tsuzuki, M., Takimoto, R., Barari, A., Gallo, G., Garcia, M., Tiba, H.: Algorithmic iterative sampling in coordinate metrology plan for coordinate metrology using dynamic uncertainty analysis. In: Proceedings of the 12th IEEE International Conference on Industrial Informatics, pp. 316–319 (2014). https://doi.org/10.1109/INDIN.2014.6945531

  51. Mohammadi, M., Siadat, A., Dantan, J.Y., Tavakkoli-Moghaddam, R.: Mathematical modelling of a robust inspection process plan: Taguchi and Monte Carlo methods. Int. J. Prod. Res. 53(7), 2202–2224 (2015). https://doi.org/10.1080/00207543.2014.980460

    Article  Google Scholar 

  52. Moroni, G., PetrĂ², S.: Virtual CMM based sampling strategy optimization. In: Giordano, M., Mathieu, L., Villeneuve, F. (eds.) Product Life-Cycle Management: Geometric Variations, chap. 22, pp. 385–404. Wiley-ISTE, London (2010)

    Chapter  Google Scholar 

  53. Moroni, G., PetrĂ², S.: Coordinate measuring machine measurement planning. In: Colosimo, B.M., Senin, N. (eds.) Geometric Tolerances - Impact on Product Design, Quality Inspection and Statistical Process Monitoring, Chap. 4, pp. 111–158. Springer, London (2011). https://doi.org/10.1007/978-1-84996-311-4

    Chapter  Google Scholar 

  54. Moroni, G., PetrĂ², S.: Inspection strategies and multiple geometric tolerances. In: Jiang, X., Mathieu, L., Weckenmann, A. (eds.) Procedia CIRP, vol. 10, pp. 54–60. Huddersfield, UK (2013). https://doi.org/10.1016/j.procir.2013.08.012

    Article  Google Scholar 

  55. Moroni, G., PetrĂ², S.: Optimal inspection strategy planning for geometric tolerance verification. Precis. Eng. 38(1), 71–81 (2014). https://doi.org/10.1016/j.precisioneng.2013.07.006

    Article  Google Scholar 

  56. Moroni, G., PetrĂ², S., Polini, W.: Geometrical product specification and verification in additive manufacturing. CIRP Ann. - Manuf. Technol. 66(1), 157–160 (2017). https://doi.org/10.1016/j.cirp.2017.04.043

    Article  Google Scholar 

  57. Moroni, G., PetrĂ², S., Tolio, T.: Early cost estimation for tolerance verification. CIRP Ann. - Manuf. Technol. 60(1), 195–198 (2011). https://doi.org/10.1016/j.cirp.2011.03.010

    Article  Google Scholar 

  58. Moroni, G., Polini, W., Rasella, M.: Feature based path planning for CMMs. In: Proceedings of the 31st CIRP International Seminar on Manufacturing Systems, pp. 161–167 (2001)

    Google Scholar 

  59. Moroni, G., Polini, W., Rasella, M.: Manufacturing signatures and CMM sampling strategies. In: Proceedings of the ASPE Summer Topical Meeting on Coordinate Measuring Machines, pp. 57–62 (2003)

    Google Scholar 

  60. Moroni, G., Polini, W., Semeraro, Q.: Knowledge based method for touch probe configuration in an automated inspection system. J. Mater. Process. Technol. 76(1–3), 153–160 (1998)

    Article  Google Scholar 

  61. Moroni, G., Polini, W., Semeraro, Q.: Part setup and probe design in CMM inspection. In: Proceedings of the 32nd CIRP International Seminar on Manufacturing Systems, pp. 63–71 (1999)

    Google Scholar 

  62. Moroni, G., Rasella, M.: An hybrid approach in cmm path planning. In: Proceedings of the 3rd CIRP International Seminar on Intelligent Computation in Manufacturing Engineering, pp. 473–478 (2002)

    Google Scholar 

  63. Namboothiri, V.N.N., Shunmugam, M.S.: On determination of sample size in form error evaluation using coordinate metrology. Int. J. Prod. Res. 37(4), 793–804 (1999)

    Article  Google Scholar 

  64. Pedone, P., Vicario, G., Romano, D.: Kriging-based sequential inspection plans for coordinate measuring machines. Appl. Stoch. Model Bus Ind. 25(2), 133–149 (2009). https://doi.org/10.1002/asmb.746

    Article  MathSciNet  MATH  Google Scholar 

  65. Polini, W., Moroni, G.: A frame for a computer aided inspection planning system. Int. J. Eng. Technol. 4(1), 125–138 (2015). https://doi.org/10.14419/ijet.v4i1.3937

    Article  Google Scholar 

  66. Raghunandan, R., Rao, P.V.: Selection of an optimum sample size for flatness error estimation while using coordinate measuring machine. Int. J. Mach. Tool Manufact. 47(3–4), 477–482 (2007). https://doi.org/10.1016/j.ijmachtools.2006.06.008

    Article  Google Scholar 

  67. Rossi, A.: A form of deviation-based method for coordinate measuring machine sampling optimization in an assessment of roundness. Proc. IME B J. Eng. Manufact. 215(11), 1505–1518 (2001). https://doi.org/10.1243/0954405011519411

    Article  Google Scholar 

  68. Savio, E.: A methodology for the quantification of value-adding by manufacturing metrology. CIRP Ann. - Manuf. Technol. 61(1), 503–506 (2012). https://doi.org/10.1016/j.cirp.2012.03.019

    Article  Google Scholar 

  69. Savio, E., De Chiffre, L., Carmignato, S., Meinertz, J.: Economic benefits of metrology in manufacturing. CIRP Ann. - Manuf. Technol. 65(1), 495–498 (2016). https://doi.org/10.1016/j.cirp.2016.04.020

    Article  Google Scholar 

  70. Sibalija, T., Zivkovic, S., Fountas, N., Majstorovic, V., Macuzic, J., Vaxevanidis, N.: Virtual optimisation of CAI process parameters for the sculptured surface inspection. Procedia CIRP 57, 574–579 (2016). https://doi.org/10.1016/j.procir.2016.11.099

    Article  Google Scholar 

  71. Stojadinovic, S., Majstorovic, V., Durakbasa, N.: A feature -based path planning for inspection prismatic parts on CMM. In: Proceedings of the 21st IMEKO World Congress on Measurement in Research and Industry (2015)

    Google Scholar 

  72. Stojadinovic, S., Majstorovic, V., Durakbasa, N.: An advanced CAI model for inspection planning on CMM. LNME, pp. 57–65 (2017). https://doi.org/10.1007/978-3-319-56430-2_5

    Google Scholar 

  73. Stojadinovic, S., Majstorovic, V., Durakbasa, N., Sibalija, T.: Ants colony optimisation of a measuring path of prismatic parts on a CMM. Metrol Meas. Syst. 23(1), 119–132 (2016). https://doi.org/10.1515/mms-2016-0011

    Article  Google Scholar 

  74. Stojadinovic, S., Majstorovic, V., Durakbasa, N., Sibalija, T.: Towards an intelligent approach for cmm inspection planning of prismatic parts. Measurement 92, 326–339 (2016). https://doi.org/10.1016/j.measurement.2016.06.037

    Article  Google Scholar 

  75. Summerhays, K.D., Henke, R.P., Baldwin, J.M., Cassou, R.M., Brown, C.W.: Optimizing discrete point sample patterns and measurement data analysis on internal cylindrical surfaces with systematic form deviations. Precis. Eng. 26(1), 105–121 (2002). https://doi.org/10.1016/S0141-6359(01)00106-4

    Article  Google Scholar 

  76. Sun, L., Ren, M., Yin, Y.: Domain-specific gaussian process-based intelligent sampling for inspection planning of complex surfaces. Int. J. Prod. Res. 55(19), 5564–5578 (2017). https://doi.org/10.1080/00207543.2017.1301688

    Article  Google Scholar 

  77. Thompson, M., Moroni, G., Vaneker, T., Fadel, G., Campbell, R., Gibson, I., Bernard, A., Schulz, J., Graf, P., Ahuja, B., Martina, F.: Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann. - Manuf. Technol. 65(2), 737–760 (2016). https://doi.org/10.1016/j.cirp.2016.05.004

    Article  Google Scholar 

  78. Zhou, Z., Zhang, Y., Tang, K.: Sweep scan path planning for efficient freeform surface inspection on five-axis cmm. CAD Comput. Aided Des. 77, 1–17 (2016). https://doi.org/10.1016/j.cad.2016.03.003

    Article  Google Scholar 

  79. ZMorph: Voxelizer 3D (2016). www.voxelizer.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Moroni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moroni, G., PetrĂ², S. (2018). Geometric Inspection Planning as a Key Element in Industry 4.0. In: Ni, J., Majstorovic, V., Djurdjanovic, D. (eds) Proceedings of 3rd International Conference on the Industry 4.0 Model for Advanced Manufacturing. AMP 2018. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-89563-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89563-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89562-8

  • Online ISBN: 978-3-319-89563-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics