Advertisement

Opportunistic Maintenance for Wind Turbines Considering External Opportunities – A Case Study

  • H. Truong Ba
  • M. E. Cholette
  • P. Borghesani
  • L. Ma
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

This paper aims to develop an opportunistic maintenance (OM) policy for the generator of a hypothetical wind turbine using methods developed recently by the authors. The OM policy considers external opportunities caused by low wind speeds which produce little-to-no electric power. The results show that some cost savings are achievable by taking maximal advantage of these low-speed wind events, particularly when electricity prices are at their peak cycle.

Keywords

Opportunistic maintenance Maintenance optimization Partial opportunity Wind turbine maintenance 

Abbreviations:

PM:

Preventive maintenance

OM:

Opportunistic maintenance

CM:

Corrective maintenance

NHPP:

Non-homogeneous Poisson Process

References

  1. 1.
    Nguyen, T.A.T., Chou, S.-Y.: Maintenance strategy selection for improving cost-effectiveness of offshore wind systems. Energy Convers. Manag. 157, 86–95 (2018).  https://doi.org/10.1016/j.enconman.2017.11.090CrossRefGoogle Scholar
  2. 2.
    Wang, H., Pham, H.: Reliability and optimal maintenance. Springer, London (2006). vol Book, Whole.  https://doi.org/10.1007/b138077
  3. 3.
    Gustavsson, E., Patriksson, M., Stromberg, A.B., Wojciechowski, A., Onnheim, M.: Preventive maintenance scheduling of multi-component systems with interval costs. Comput. Ind. Eng. 76, 390–400 (2014).  https://doi.org/10.1016/j.cie.2014.02.009CrossRefGoogle Scholar
  4. 4.
    Ding, F., Tian, Z.: Opportunistic maintenance for wind farms considering multi-level imperfect maintenance thresholds. Renew. Energy 45, 175–182 (2012).  https://doi.org/10.1016/j.renene.2012.02.030CrossRefGoogle Scholar
  5. 5.
    Abdollahzadeh, H., Atashgar, K., Abbasi, M.: Multi-objective opportunistic maintenance optimization of a wind farm considering limited number of maintenance groups. Renew. Energy 88, 247–261 (2016).  https://doi.org/10.1016/j.renene.2015.11.022CrossRefGoogle Scholar
  6. 6.
    Atashgar, K., Abdollahzadeh, H.: Reliability optimization of wind farms considering redundancy and opportunistic maintenance strategy. Energy Convers. Manag. 112, 445–458 (2016).  https://doi.org/10.1016/j.enconman.2016.01.027CrossRefGoogle Scholar
  7. 7.
    Shafiee, M., Finkelstein, M.: An optimal age-based group maintenance policy for multi-unit degrading systems. Reliab. Eng. Syst. Saf. 134, 230–238 (2015).  https://doi.org/10.1016/j.ress.2014.09.016CrossRefGoogle Scholar
  8. 8.
    Reder, M., Yürüşen, N.Y., Melero, J.J.: Data-driven learning framework for associating weather conditions and wind turbine failures. Reliab. Eng. Syst. Saf. 169, 554–569 (2018).  https://doi.org/10.1016/j.ress.2017.10.004CrossRefGoogle Scholar
  9. 9.
    Zhang, X., Zeng, J.: Joint optimization of condition-based opportunistic maintenance and spare parts provisioning policy in multiunit systems. Eur. J. Oper. Res. 262(2), 479–498 (2017).  https://doi.org/10.1016/j.ejor.2017.03.019MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Ghamlouch, H., Fouladirad, M., Grall, A.: The use of real option in condition-based maintenance scheduling for wind turbines with production and deterioration uncertainties. Reliab. Eng. Syst. Saf. (2017).  https://doi.org/10.1016/j.ress.2017.10.001CrossRefGoogle Scholar
  11. 11.
    Shafiee, M., Finkelstein, M., Berenguer, C.: An opportunistic condition-based maintenance policy for offshore wind turbine blades subjected to degradation and environmental shocks. Reliab. Eng. Syst. Saf. 142, 463–471 (2015).  https://doi.org/10.1016/j.ress.2015.05.001CrossRefGoogle Scholar
  12. 12.
    Tian, Z.G., Jin, T.D., Wu, B.R., Ding, F.F.: Condition based maintenance optimization for wind power generation systems under continuous monitoring. Renew. Energy 36(5), 1502–1509 (2011).  https://doi.org/10.1016/j.renene.2010.10.028CrossRefGoogle Scholar
  13. 13.
    Ab-Samat, H., Kamaruddin, S.: Opportunistic maintenance (OM) as a new advancement in maintenance approaches. J. Qual. Maintenance Eng. 20(2), 98–121 (2014).  https://doi.org/10.1108/jqme-04-2013-0018CrossRefGoogle Scholar
  14. 14.
    Pham, H., Wang, H.: Optimal (τ, T) opportunistic maintenance of a k-out-of-n:G system with imperfect PM and partial failure. Naval Res. Logistics 47(3), 223–239 (2000). 10.1002/(SICI)1520-6750(200004)47:3<223::AID-NAV3>3.3.CO;2-1MathSciNetCrossRefGoogle Scholar
  15. 15.
    Zhang, X.H., Zeng, J.C.: A general modeling method for opportunistic maintenance modeling of multi-unit systems. Reliab. Eng. Syst. Saf. 140, 176–190 (2015).  https://doi.org/10.1016/j.ress.2015.03.030CrossRefGoogle Scholar
  16. 16.
    Zhu, W., Fouladirad, M., Bérenguer, C.: A multi-level maintenance policy for a multi-component and multifailure mode system with two independent failure modes. Reliab. Eng. Syst. Saf. 153, 50–63 (2016).  https://doi.org/10.1016/j.ress.2016.03.020CrossRefGoogle Scholar
  17. 17.
    Zhang, C., Gao, W., Guo, S., Li, Y., Yang, T.: Opportunistic maintenance for wind turbines considering imperfect, reliability-based maintenance. Renew. Energy (2016).  https://doi.org/10.1016/j.renene.2016.10.072CrossRefGoogle Scholar
  18. 18.
    Erguido, A., Crespo Márquez, A., Castellano, E., Gómez Fernández, J.F.: A dynamic opportunistic maintenance model to maximize energy-based availability while reducing the life cycle cost of wind farms. Renew. Energy (2017).  https://doi.org/10.1016/j.renene.2017.07.017CrossRefGoogle Scholar
  19. 19.
    Zhu, Q., Peng, H., van Houtum, G.-J.: A condition-based maintenance policy for multi-component systems with a high maintenance setup cost. Eindhoven University of Technology, Netherlands, BETA Working Paper 400 (2012)Google Scholar
  20. 20.
    Irawan, C.A., Ouelhadj, D., Jones, D., Stålhane, M., Sperstad, I.B.: Optimisation of maintenance routing and scheduling for offshore wind farms. Eur. J. Oper. Res. 256(1), 76–89 (2017).  https://doi.org/10.1016/j.ejor.2016.05.059MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sarker, B.R., Ibn Faiz, T.: Minimizing maintenance cost for offshore wind turbines following multi-level opportunistic preventive strategy. Renew. Energy 85, 104–113 (2016).  https://doi.org/10.1016/j.renene.2015.06.030CrossRefGoogle Scholar
  22. 22.
    Ba, H.T., Cholette, M.E., Borghesani, P., Ma, L.: A quantitative study on the impact of opportunistic maintenance in the presence of time-varying costs. In: 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 4–7 December 2016, pp. 1360–1364 (2016).  https://doi.org/10.1109/ieem.2016.7798100
  23. 23.
    Truong Ba, H., Cholette, M.E., Borghesani, P., Zhou, Y., Ma, L.: Opportunistic maintenance considering non-homogenous opportunity arrivals and stochastic opportunity durations. Reliab. Eng. Syst. Saf. 160, 151–161 (2017).  https://doi.org/10.1016/j.ress.2016.12.011CrossRefGoogle Scholar
  24. 24.
    Ross, S.M.: Introduction to Probability Models. 10, 11th edn. Elsevier, Amsterdam (2014). vol Book, WholeMATHGoogle Scholar
  25. 25.
    Cinlar, E.: Introduction to Stochastic Processes. Courier Corporation (2013)Google Scholar
  26. 26.
    Mount Emerald Wind Resource and Energy Yield Assessment: Parsons Brinckerhoff Archive, RATCH Australia Corporation Limited (2012)Google Scholar
  27. 27.
    Truong Ba, H., Cholette, M.E., Wang, R., Borghesani, P., Ma, L., Steinberg, T.A.: Optimal condition-based cleaning of solar power collectors. Sol. Energy 157, 762–777 (2017).  https://doi.org/10.1016/j.solener.2017.08.076CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • H. Truong Ba
    • 1
  • M. E. Cholette
    • 1
  • P. Borghesani
    • 2
  • L. Ma
    • 1
  1. 1.Queensland University of TechnologyBrisbaneAustralia
  2. 2.University of New South WalesSydneyAustralia

Personalised recommendations