Advertisement

Development of Skills and Competences in Manufacturing Towards Education 4.0: A Teaching Factory Approach

Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Industry 4.0 manufacturing paradigm, apart from the technological revolution requires also a shift from the traditional education to an advanced set of methods for developing skills and building digital competences, summarized in the term Education 4.0. Human skills undoubtedly require upgrading to handle the key enabling technologies sufficiently, including machines as cyber-physical systems, augmented reality, human-robot collaboration, and smart devices. In the present work, these new requirements for the enhanced manufacturing workflow are presented. Furthermore, existing education 4.0 approaches are investigated, and finally, a Teaching Factory concept adapted to the Industry 4.0 paradigm needs is proposed.

Keywords

Manufacturing Industry 4.0 Education 4.0 Teaching factory 

References

  1. 1.
    Deloitte: Challenges and Solutions of the Digital Transformation (2014). https://www2.deloitte.com/content/dam/Deloitte/ch/Documents/manufacturing/ch-en-manufacturing-industry-4-0-24102014.pdf. Accessed 30 Jan 2018
  2. 2.
    Chryssolouris, G., Mavrikios, D., Papakostas, N., Mourtzis, D., Michalos, G., Georgoulias, K.: Digital manufacturing: history, perspectives, and outlook. Proc. IMECHE Part B J. Eng. Manuf. 222, 451–462 (2008)CrossRefGoogle Scholar
  3. 3.
    Nee, A.Y.C., Ong, S.K., Chryssolouris, G., Mourtzis, D.: Augmented reality applications in design and manufacturing. CIRP Ann. Manuf. Technol. 61, 657–679 (2012)CrossRefGoogle Scholar
  4. 4.
    Wu, D., Greer, M.J., Rosen, D.W., Schaefer, D.: Cloud manufacturing: strategic vision and state-of-the-art. J. Manuf. Syst. 32(4), 564–579 (2013)CrossRefGoogle Scholar
  5. 5.
    Meier, H., Roy, R., Seliger, G.: Industrial product-service systems—IPS2. CIRP Ann. Manuf. Technol. 59(2), 607–627 (2010)CrossRefGoogle Scholar
  6. 6.
    SAS: Big Data Meets Big Data Analytics (2012). https://eric.univ-lyon2.fr/~ricco/cours/slides/sources/big-data-meets-big-data-analytics-105777.pdf. Accessed 30 Jan 2018
  7. 7.
    Court, D.: Getting Big Impact from Big Data (2015). http://www.mckinsey.com/insights/business_technology/getting_big_impact_from_big_data. Accessed 30 Jan 2018
  8. 8.
    Mourtzis, D., Vlachou, E., Milas, N.: Industrial Big Data as a result of IoT adoption in Manufacturing. In: CIRPe2016, Procedia CIRP, 5th CIRP Global Web Conference-Research and Innovation for Future Production, vol. 55, pp. 290–295 (2016)CrossRefGoogle Scholar
  9. 9.
    He, W., Xu, L.: A state-of-the-art survey of cloud manufacturing. Int. J. Comput. Integr. Manuf. 28(3), 239–250 (2015)CrossRefGoogle Scholar
  10. 10.
    Horváth, I., Vroom, R.W.: Ubiquitous computer aided design: a broken promise or a Sleeping Beauty? Comput. Aid. Des. 59, 161–175 (2015).  https://doi.org/10.1016/j.cad.2014.10.006CrossRefGoogle Scholar
  11. 11.
    Barfield, W., Shieldst, R., Cooper, S.: A survey of computer-aided design: implications for creativity, productivity, decision making, and job satisfaction. Int. J. Hum. Factors Manuf. 3(2), 153–167 (1993).  https://doi.org/10.1002/hfm.4530030205CrossRefGoogle Scholar
  12. 12.
    Kochhar, N.K., Kelkar, S.G.: The role of CAE in product development at Ford Motor Company. In: Computational Fluid and Solid Mechanics, pp. 15–18 (2003).  https://doi.org/10.1016/b978-008044046-0.50007-5CrossRefGoogle Scholar
  13. 13.
    Efthymiou, K., Pagoropoulos, A., Mourtzis, D.: Intelligent scheduling for manufacturing systems: a case study. Lecture Notes in Mechanical Engineering, pp. 1153–1164 (2013).  https://doi.org/10.1007/978-3-319-00557-7_94CrossRefGoogle Scholar
  14. 14.
    Mourtzis, D., Doukas, M., Vlachou, E.: A mobile application for knowledge-enriched short-term scheduling of complex products. Log. Res. 9(1), 3 (2016).  https://doi.org/10.1007/s12159-015-0130-7
  15. 15.
    Atieh, A.M., et al.: Performance improvement of inventory management system processes by an automated warehouse management system. Proc. CIRP 41, 568–572 (2016).  https://doi.org/10.1016/j.procir.2015.12.122CrossRefGoogle Scholar
  16. 16.
    Newman, S.T., Nassehi, A.: Universal manufacturing platform for CNC machining. CIRP Ann. 56(1), 459–462 (2007).  https://doi.org/10.1016/j.cirp.2007.05.110CrossRefGoogle Scholar
  17. 17.
    Teti, R., et al.: Advanced monitoring of machining operations. CIRP Ann. 59(2), 717–739 (2010).  https://doi.org/10.1016/j.cirp.2010.05.010CrossRefGoogle Scholar
  18. 18.
    Michalos, G., Makris, S., Chryssolouris, G.: The new assembly system paradigm. Int. J. Comput. Integr. Manuf. 28(12), 1252–1261 (2014).  https://doi.org/10.1080/0951192x.2014.964323CrossRefGoogle Scholar
  19. 19.
    Mori, M., Fujishima, M.: Remote monitoring and maintenance system for CNC machine tools. Proc. CIRP 12, 7–12 (2013).  https://doi.org/10.1016/j.procir.2013.09.003CrossRefGoogle Scholar
  20. 20.
    Kristianto, Y., et al.: A study of technology adoption in manufacturing firms. J. Manuf. Technol. Manag. 23(2), 198–211 (2012).  https://doi.org/10.1108/17410381211202197MathSciNetCrossRefGoogle Scholar
  21. 21.
    Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., MacIntyre, B.: Recent advances in augmented reality. IEEE Comput. Graph. Appl. 21(6), 34–47 (2001).  https://doi.org/10.1109/38.963459CrossRefGoogle Scholar
  22. 22.
    Sztipanovits, J., Ying, S.: Strategic R&D opportunities for 21st century: cyber-physical systems, Connecting computer and information systems with the physical world. Report (2013). http://www.nist.gov/el/upload/12-Cyber-Physical-Systems020113_final.pdf. Accessed 30 Jan 2018
  23. 23.
    Mikusz, M.: Towards an understanding of cyber-physical systems as industrial software-product-service systems. Proc. CIRP 16, 385–389 (2014).  https://doi.org/10.1016/j.procir.2014.02.025CrossRefGoogle Scholar
  24. 24.
    Mourtzis, D., Vlachou, E.: Cloud-based cyber-physical systems and quality of services. TQM Emerald J. 28(5), 704–733 (2016)CrossRefGoogle Scholar
  25. 25.
    Forbes, H., Schaefer, D.: Social product development: the democratization of design, manufacture and innovation. Proc. CIRP 60, 404–409 (2017).  https://doi.org/10.1016/j.procir.2017.02.029CrossRefGoogle Scholar
  26. 26.
    Valilai, F., Houshmand, M.: A collaborative and integrated platform to support distributed manufacturing system using a service-oriented approach based on cloud computing paradigm. Robot. Comput. Integr. Manuf. 29(1), 110–127 (2013)CrossRefGoogle Scholar
  27. 27.
    Sassanelli, C., et al.: Testing the methodology to generate Design for Product Service Supportability (DfPSS) guidelines and rules: an application case. Proc. CIRP 64, 265–270 (2017)CrossRefGoogle Scholar
  28. 28.
    Mourtzis, D., Vlachou, E., Zogopoulos, V., Xanthi, F.: Integrated production and maintenance scheduling through machine monitoring and augmented reality: an Industry 4.0 approach. In: APMS Conference 2017, Hamburg, Germany, 3–7 September (2017)CrossRefGoogle Scholar
  29. 29.
    Segovia, D., Mendoza, M., Mendoza, E., González, E.: Augmented reality as a tool for production and quality monitoring. Proc. Comput. Sci. 75, 291–300 (2015).  https://doi.org/10.1016/j.procs.2015.12.250CrossRefGoogle Scholar
  30. 30.
    Wittenberg, C.: Human-CPS interaction - requirements and human-machine interaction methods for the Industry 4.0. IFAC-PapersOnLine 49(19), 420–425 (2016).  https://doi.org/10.1016/j.ifacol.2016.10.602CrossRefGoogle Scholar
  31. 31.
    Mourtzis, D., Vlachou, E., Milas, N., Xanthopoulos, N.: A cloud-based approach for maintenance of machine tools and equipment based on shop-floor monitoring. In: CIRP CMS 2015, Procedia CIRP, 48th CIRP Conference on Manufacturing Systems, Naples, Italy, 24–26 June, vol. 41, pp. 655–660 (2015)CrossRefGoogle Scholar
  32. 32.
    Mourtzis, D., Vlachou, E., Zogopoulos, V.: Cloud-based augmented reality remote maintenance through shop-floor monitoring: a PPS approach. ASME J. Manuf. Sci. Eng. 139(6), 061011 (2017)CrossRefGoogle Scholar
  33. 33.
    Masoni, R., Ferrise, F., Bordegoni, M., Gattullo, M., Uva, A.E., Fiorentino, M., Carrabba, E., Di Donato, M.: Supporting remote maintenance in Industry 4.0 through augmented reality. Proc. Manuf. 11, 1296–1302 (2017).  https://doi.org/10.1016/j.promfg.2017.07.257CrossRefGoogle Scholar
  34. 34.
    Mourtzis, D., Doukas, M., Milas, N.: A knowledge-based social networking app for collaborative problem-solving in manufacturing. Manuf. Lett. 10, 1–5 (2016).  https://doi.org/10.1016/j.mfglet.2016.08.001CrossRefGoogle Scholar
  35. 35.
    Makris, S., Pintzos, G., Rentzos, L., Chryssolouris, G.: Assembly support using AR technology based on automatic sequence generation. CIRP Ann. Manuf. Technol. 62(1), 9–12 (2013)CrossRefGoogle Scholar
  36. 36.
    Makris, S., Karagiannis, P., Koukas, S., Matthaiakis, A.S.: Augmented reality system for operator support in human–robot collaborative assembly. CIRP Ann. Manuf. Technol. 65(1), 61–64 (2016)CrossRefGoogle Scholar
  37. 37.
    Zhong, R.Y., Xu, X., Klotz, E., Newman, S.T.: Intelligent manufacturing in the context of Industry 4.0: a review. Engineering 3(5), 616–630 (2017).  https://doi.org/10.1016/J.ENG.2017.05.015CrossRefGoogle Scholar
  38. 38.
    Mourtzis, D., Fotia, S., Vlachou, K.: Lean rules extraction methodology for lean PSS design via key performance indicators monitoring. J. Manuf. Syst. 42, 233–243 (2017)CrossRefGoogle Scholar
  39. 39.
    Hecklau, F., Galeitzke, M., Flachs, S., Kohl, H.: Holistic approach for human resource management in Industry 4.0. Procedia CIRP 54, 1–6 (2016).  https://doi.org/10.1016/j.procir.2016.05.102CrossRefGoogle Scholar
  40. 40.
    Berger, R.: The Industrie 4.0 transition quantified: how the fourth industrial revolution is reshuffling the economic, social and industrial model. Report (2016). https://www.rolandberger.com/de/Publications/pub_the_industrie_4_0_transition_quantified.html. Accessed 30 Jan 2018
  41. 41.
    Berger, T., Frey, C.: Digitalization, Jobs, and Convergence in Europe: Strategies for Closing the Skills Gap (2016). http://www.oxfordmartin.ox.ac.uk/downloads/reports/SCALE_Digitalisation_Final.pdf. Accessed 30 Jan 2018
  42. 42.
    Mavrikios, D., Papakostas, N., Mourtzis, D., Chryssolouris, G.: On industrial learning & training for the Factories of the Future: a conceptual, cognitive & technology framework. J. Intell. Manuf. 24(3), 473–485 (2011). Special Issue on Engineering EducationCrossRefGoogle Scholar
  43. 43.
    Rentzos, L., Mavrikios, D., Chryssolouris, G.: A two-way knowledge interaction in manufacturing education: the teaching factory. In: Procedia CIRP, 5th Conference on Learning Factories, Bochum, Germany, 7–8 July, vol. 32, pp. 31–35 (2015)CrossRefGoogle Scholar
  44. 44.
    Chryssolouris, G., Mavrikios, D., Rentzos, L.: The teaching factory: a manufacturing education paradigm. In: CIRP-CMS 2016, 49th CIRP Conference on Manufacturing Systems, Stuttgart, Germany, 25–27 May, vol. 57, pp. 44–48 (2016)CrossRefGoogle Scholar
  45. 45.
    Chryssolouris, G., Mavrikios, D., Papakostas, N., Mourtzis, D.: Education in manufacturing technology & science: a view on future challenges & goals. Inaugural keynote. In: Proceedings of the International Conference on Manufacturing Science and Technology, Melaka, Malaysia, August 2006 (2006)Google Scholar
  46. 46.
    Colledani, M., Silipo, L., Yemane, A., Lanza, G., Bόrgin, J., Hochdφrffer, J., Georgoulias, K., Mourtzis, D., Bitte, F., Bernard, A., Belkadi, F.: Technology-based product-services for supporting frugal innovation. In: 8th IPSS Conference, Product-Service Systems Across Life Cycle (CIRP IPSS), Procedia CIRP, Bergamo, Italy, 20–21 June, vol. 47, pp. 126–131 (2016)CrossRefGoogle Scholar
  47. 47.
    Rentzos, L., Vourtsis, C., Mavrikios, D., Chryssolouris, G.: Using VR for complex product design. In: Virtual, Augmented and Mixed Reality, Applications of Virtual and Augmented Reality. Lecture Notes in Computer Science, vol. 8526, pp. 455–464 (2014)Google Scholar
  48. 48.
    Rentzos, L., Doukas, M., Mavrikios, D., Mourtzis, D., Chryssolouris, G.: Integrating manufacturing education with industrial practice using teaching factory paradigm: a construction equipment application. In: CMS 2014, Procedia CIRP, 47th CIRP Conference on Manufacturing Systems, Ontario, Canada, 28–30 April, vol. 17, pp. 189–194 (2014)CrossRefGoogle Scholar
  49. 49.
    Chryssolouris, G., Mourtzis, D., Stavropoulos, P., Mavrikios, D., Pandremenos, J.: Knowledge management in a virtual lab collaborative training project. In: Bernard, A., Tichkiewitch, S. (eds.) Methods and Tools for Effective Knowledge Life-Cycle-Management, vol. 3, pp. 435–446 (2008)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory for Manufacturing Systems and Automation, Department of Mechanical Engineering and AeronauticsUniversity of PatrasPatrasGreece

Personalised recommendations