Skip to main content

Performance of Bore-Cone Taper Junctions on Explanted Total Knee Replacements with Modular Stem Extensions: Mechanical Disassembly and Corrosion Analysis of Two Designs

  • Chapter
  • First Online:
Book cover Orthopedic Biomaterials

Abstract

The purpose of this retrieval study was to evaluate bore-cone taper junctions of total knee replacements (TKR) designed with modular stem extensions . Thirty eight explanted modular components from either of two manufacturer’s designs were included. Key design differences for the included TKR were the orientation of the bore-cone taper junctions (bore located on the component versus bore located on the modular stem) and the use of similar or mixed metal combinations at the taper junction. The forces necessary to disassemble the modular stems at the bore-cone taper junction were measured using controlled mechanical testing. Surface corrosion areas on bore and cone taper surfaces were characterized and measured using photogrammetric and profilometric techniques. Taper design (p = 0.0047), evidence of fretting (p = 0.0001), lower disassembly force (ρ = −0.601, p = 0.001), and anterior/posterior location (p = 0.016) were associated with higher surface corrosion areas; however, it should be noted that the taper design, evidence of fretting, and disassembly force variables were not independent from one another. The results from this study confirmed that large amounts of taper corrosion can be present in failed TKRs with modular stem extensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barrack RL. Modularity of prosthetic implants. J Am Acad Orthop Surg. 1994;2(1):16–25.

    Article  CAS  PubMed  Google Scholar 

  2. Sporer SM, Paprosky WG. Femoral fixation in the face of considerable bone loss: the use of modular stems. Clin Orthop Relat Res. 2004;429:227–31.

    Article  Google Scholar 

  3. Whittaker JP, Dharmarajan R, Toms AD. The management of bone loss in revision total knee replacement. J Bone Joint Surg Br. 2008;90-B(8):981–7.

    Article  Google Scholar 

  4. Lecerf G, Fessy MH, Phillippot R, Massin P, Giraud F, Flecher X, Girard J, Merti P, Marchetti E, Stindel E. Femoral offset: anatomical concept, definition, assessment, implications for preoperative templating and hip arthroplasty. Orthop Traumatol Surg Res. 2009;95(3):210–9.

    Article  CAS  PubMed  Google Scholar 

  5. Sakai T, Sugano N, Nishii T, Haragushi K, Ochi T, Ohzono K. Optimizing femoral anteversion and offset after total hip arthroplasty, using a modular femoral neck system: an experimental study. J Orthop Sci. 2000;5(5):489–94.

    Article  CAS  PubMed  Google Scholar 

  6. Knahr K. Total hip arthroplasty: tribological considerations and clinical consequences. In: Puhl W, Bentley G, Klaus-Peter G, editors. EFORT reference in orthopaedics and traumatology. Berlin: Springer Science & Business Media; 2013.

    Google Scholar 

  7. Harris WH. A new total hip implant. Clin Orthop Relat Res. 1971;81:105–13.

    Article  CAS  PubMed  Google Scholar 

  8. Kopec MA, Pemberton A, Milbrandt JC, Allan G. Component version in modular total hip revision. Iowa Orthop J. 2009;29:5–10.

    PubMed  PubMed Central  Google Scholar 

  9. Scott CEH, Biant LC. The role of the design of tibial components and stems in knee replacement. J Bone Joint Surg Br. 2012;94-B(8):1009–15.

    Article  Google Scholar 

  10. Marlowe DE, Parr JE, Mayor MB, editors. Selected Technical Papers 1301: modularity of orthopedic implants. Philadelphia, PA: American Society for Testing and Materials (ASTM); 1997.

    Google Scholar 

  11. Collier JP, Surprenant VA, Jensen RE, Mayor MB. Corrosion at the interface of cobalt-alloy heads on titanium-alloy stems. Clin Orthop Relat Res. 1991;(271):305-312.

    Google Scholar 

  12. Cook SD, Barrack RL, Clemow AJT. Corrosion and wear at the modular interface of uncemented femoral stems. J Bone Joint Surg Br. 1994;76(1):68–72.

    Article  CAS  PubMed  Google Scholar 

  13. Cook SD, Barrack RL, Baffes GC, Clemow AJ, Serekian P, Dong N, Kester MA. Wear and corrosion of modular interfaces in total hip replacements. Clin Orthop Relat Res. 1994;(298):80–8.

    Google Scholar 

  14. Kummer FJ, Rose RM. Corrosion of titanium/cobalt-chromium alloy couples. J Bone Joint Surg Am. 1983;65(8):1125–6.

    Article  CAS  PubMed  Google Scholar 

  15. Lucas LC, Buchanan RA, Lemons JE. Investigations on the galvanic corrosion of multialloy total hip prostheses. J Biomed Mater Res. 1981;15(5):731–47.

    Article  CAS  PubMed  Google Scholar 

  16. Marcus P, Mansfield FB. Analytical methods in corrosion science and engineering. Boca Raton, FL: CRC; 2005.

    Book  Google Scholar 

  17. Willert HG, Broback LG, Buchhorn GH, Jensen PH, Koster G, Lang I Ochsner P, Schenk R. Crevice corrosion of cemented titanium alloy stems in total hip replacements. Clin Orthop Relat Res. 1996;333:51.

    Google Scholar 

  18. Gilbert JL, Buckley CA, Jacobs JJ. In vivo corrosion of modular hip prosthesis components in mixed and similar metal combinations. The effect of crevice, stress, motion, and alloy coupling. J Biomed Mater Res. 1993;27:1533–44.

    Article  CAS  PubMed  Google Scholar 

  19. Viceconti M, Baleani M, Squarzoni S, Toni A. Fretting wear in a modular neck hip prosthesis. J Biomed Mater Res. 1997;35:207–16.

    Article  CAS  PubMed  Google Scholar 

  20. Fernandez J, Miller GJ, Mauldin CM. Modular hip prosthesis. US Patent 6319286 B1. 2001.

    Google Scholar 

  21. McCarthy JC, Bono JV, O’Donnell PJ. Custom and modular components in primary total hip replacement. Clin Orthop Relat Res. 1997;344:162.

    Article  Google Scholar 

  22. Nganbe M, Khan U, Louati H, Speirs A, Beaule PE. In vitro assessment of strength, fatigue durability, and disassembly of Ti6Al4V and CoCrMo necks in modular total hip replacements. J Biomed Mater Res B Appl Biomater. 2011;97B(1):132–8.

    Article  CAS  Google Scholar 

  23. Bishop RA, Sellenschloh K, Morlock MM. Strength of the taper lock at the stem-neck junction in hip replacement. Proceedings of the 58th Annual Meeting of the Orthopaedic Research Society, 2012, p. 1048.

    Google Scholar 

  24. Pallini F, Cristofolini L, Traina F, Toni A. Modular hip stems: determination of disassembly force of a neck-stem coupling. Artif Organs. 2007;31(2):166–70.

    Article  PubMed  Google Scholar 

  25. Goldberg JR, Gilbert JL. In vitro corrosion testing of modular hip tapers. J Biomed Mater Res B. 2003;64:78–93.

    Article  CAS  Google Scholar 

  26. Flemming C, Brown SA. Mechanical testing for fretting corrosion of modular total hip tapers. In: Kambic HE, Yokobori AT, editors. Biomaterials’ mechanical properties, Issue, vol. 1173; 1994. p. 156–66.

    Chapter  Google Scholar 

  27. Swaminathan V, Gilbert JL. Fretting corrosion of CoCrMo and Ti6Al4V interfaces. Biomaterials. 2012;33(22):5487–503.

    Article  CAS  PubMed  Google Scholar 

  28. Brown SA, Flemming C, Kawalec JS. Fretting corrosion accelerates crevice corrosion of modular hip tapers. J Appl Biomater. 1995;6:19–26.

    Article  CAS  PubMed  Google Scholar 

  29. Kop AM, Swarts E. Corrosion of a hip stem with a modular neck taper junction. J Arthroplasty. 2009;24:1019–23.

    Article  PubMed  Google Scholar 

  30. Harman MK, Baleani M, Juda K, Viceconti M. Repeatable procedure for evaluating taper damage on femoral stems with modular necks. J Biomet Mater Res B. 2011;99:431–9.

    Article  CAS  Google Scholar 

  31. Geringer J, Forest B, Combrade P. Fretting-corrosion of materials used as orthopaedic implants. Wear. 2005;259:943–51.

    Article  CAS  Google Scholar 

  32. Meyer H, Mueller T, Goldau G, Chamaon K, Ruetschi M, Lohmann CH. Corrosion at the cone/taper interface leads to failure of large-diameter metal-on-metal total hip arthroplasties. Clin Orthop Relat Res. 2012;470(11):3101–8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Arnholt CM, DW MD, Tohfafarosh M, Gilbert JL, Rimnac CM, Kurtz SM. Implant Research Center Writing Committee, Klein G, Mont MA, Parvizi J, Cates HE, Lee GC, Malkani A, Kraay M. Mechanically assisted taper corrosion in modular TKA. J Arthroplasty. 2014;29(9 Suppl):205–8.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lanting BA, Teeter MG, Vasarhelyi EM, Ivanov TG, Howard JL, Naudie DD. Correlation of corrosion and biomechanics in the retrieval of a single modular neck total hip arthroplasty design. J Arthroplasty. 2015;30(1):135–40.

    Article  PubMed  Google Scholar 

  35. Panigrahi P, Poursaee A, Harman MK. Corrosion behavior of medical-grade Ti-6Al-4V exposed to tensile loads. Proceedings of the 61st Annual Meeting of the Orthopaedic Research Society, 2015.

    Google Scholar 

  36. Wassef AJ, Schmalzried TP. Femoral taperosis: an accident waiting to happen? Bone Joint J. 2013;95-B(11 Suppl):3–6.

    Article  CAS  PubMed  Google Scholar 

  37. McMaster WC, Patel J. Adverse local tissue response lesion of the knee associated with Morse taper corrosion. J Arthroplasty. 2013;28(2):375.e5–8.

    Article  Google Scholar 

  38. Shulman RM, Zywiel MG, Gandhi R, Davey JR, Salonen DC. Trunnionosis: the latest culprit in adverse reactions to metal debris following hip arthroplasty. Skeletal Radiol. 2015;44:433–40.

    Article  PubMed  Google Scholar 

  39. Higgs GB, Hanzlik JA, MacDonald DW, Gilbert JL, Rimnac CM, Kurtz SM. Is increased modularity associated with fretting and corrosion damage in metal-on-metal total hip arthroplasty devices? A retrieval study. J Arthroplasty. 2013;28(Suppl 1):2–6.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kurtz SM, Kocagoz SB, Hanslik JA, Underwood RJ, Gilbert JL, MacDonald DW, Lee G-C, Mont MA, Kraay MJ, Klein GR, Parvazi J, Rimnac CM. Do ceramic femoral heads reduce taper fretting corrosion in hip arthroplasty? A retrieval study. Clin Orthop Relat Res. 2013;471(10):3270–82.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Berry DJ, Abdel MP, Callaghan JJ. What are the current clinical issues in wear and tribocorrosion? Clin Orthop Relat Res. 2014;472(12):3659–64.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Esposito CI, Wright TM, Goodman SB, Berry DJ. What is the trouble with trunnions? Clin Orthop Relat Res. 2014;472(12):3652–8.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Munir S, Walter WL, Walsh WR. Variations in the trunnion surface topography between different commercially available hip replacement stems. J Orthop Res. 2015;33:98–105.

    Article  PubMed  Google Scholar 

  44. ISO 7206–10:2003(E). Implants for surgery—partial and total hip-joint prostheses—Part 10: Determination of resistance to static load of modular femoral heads.

    Google Scholar 

  45. ASTM F2009-00. Standard test method for determining the axial disassembly force of taper connections of modular prostheses.

    Google Scholar 

  46. Snethen K, Henson K, Lutzner J, Kirschner S, Harman M. Mechanical disassembly of retrieved long-stem total knee replacement with taper modularity. Annual Meeting & Exposition of the Society for Biomaterials; 2014.

    Google Scholar 

  47. Panigrahi P, Schwartzman KG, Harman MK. Polyvinyl siloxane molds for nondestructive surface feature metrology of failed joint prostheses. J Fail Anal Prev. 2015;15:266–71.

    Article  Google Scholar 

  48. Class 2 Recall: NexGen complete knee solutions stemmed Tibial component Precoat. FDA medical device recalls database no. Z-0480-2014. 2013. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRES/res.cfm?id=123053.

  49. Class 2 Recall: NexGen complete knee solution MIS Total knee procedure stemmed Tibial component, Precoat. FDA medical device recalls database no. Z-1938-2014. 2014. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRES/res.cfm?id=127988.

  50. Pennock AT, Schmidt AH, Bourgeault CA. Morse-type tapers: factors that may influence taper strength during total hip arthroplasty. J Arthroplasty. 2002;17(6):773–8.

    Article  PubMed  Google Scholar 

  51. Rehmer A, Bishop NE, Morlock MM. Influence of assembly procedure and material combination on the strength of the taper connection at the head-neck junction of modular hip endoprostheses. Clin Biomech. 2012;27(1):77–83.

    Article  Google Scholar 

  52. RT-PLUS Modular: constrained rotating total knee prosthesis: surgical technique “Intramedullary Application”. Plus Orthopaedics literature no. 1313-e-Ed; 2007.

    Google Scholar 

  53. Zimmer NexGen Rotating Hinge Knee Primary/Revision Surgical Technique. Zimmer literature no. 97-5880-002-00 Rev. 3; 2009.

    Google Scholar 

  54. Padgett DE, Stoner K, Nassif N, Nawabi D, Wright T, Elpers M. The effect of taper geometry on large head MOM THA taper-trunnion damage. Bone Joint J. 2013;95-B(Suppl 34):472.

    Google Scholar 

  55. Panagiotidou A, Meswania J, Hua J, Muirhead-Allwood S, Hart A, Blunn G. Enhanced wear and corrosion in modular tapers in total hip replacement is associated with the contact area and surface topography. J Orthop Res. 2013;31(12):2032–9.

    Article  PubMed  Google Scholar 

  56. Goldberg JR, Gilbert JL, Jacobs JJ, Bauer TW, Paprosky W, Leurgans S. A multicenter retrieval study of the taper interfaces of modular hip prostheses. Clin Orthop Relat Res. 2002;401:149–61.

    Article  Google Scholar 

  57. Lieberman JR, Rimnac CM, Garvin KL, Klein RW, Salvati EA. An analysis of the head-neck taper interface in retrieved hip prostheses. Clin Orthop Relat Res. 1994;300:162–7.

    Google Scholar 

  58. Csernica RM, Harman MK, Baleani M, Tozzi G, Erani P, Stea S, Toni A. Mechanical disassembly and taper damage assessment of retrieved femoral stems with modular necks. Proceedings of the 59th annual meeting of the Orthopaedic Research Society; 2013.

    Google Scholar 

  59. Padgett DE, Stoner K, Nassif N, Nawabi D, Wright T, Elpers M. The effect of taper geometry on large head MOM THA taper-trunnion damage. Bone Joint J. 2013;95-B(Suppl 34):472.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melinda K. Harman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panigrahi, P., Snethen, K., Schwartzman, K.G., Lützner, J., Harman, M.K. (2018). Performance of Bore-Cone Taper Junctions on Explanted Total Knee Replacements with Modular Stem Extensions: Mechanical Disassembly and Corrosion Analysis of Two Designs. In: Li, B., Webster, T. (eds) Orthopedic Biomaterials . Springer, Cham. https://doi.org/10.1007/978-3-319-89542-0_5

Download citation

Publish with us

Policies and ethics