Abstract
Bone defects caused by trauma, tumors, errors in development, disease, and fractures occur within young and aging populations. Dysfunction, impairment, and pain are the main reasons that patients seek clinical intervention each year. In many of these cases, revision procedures are needed due to subsequent bone infection and resorption, bone mass loss, reemergence of bone cancer reoccurrence or failure of new bone tissue to grow. Revision procedures and increased hospital stays can cost hundreds of thousands of dollars for a single patient, significant lost time from work, altered and restricted lifestyles, and in some cases, death. Additionally, high-risk individuals in the population have led to an increase in the need for additional surgical operations due to device or implant failure or infection. The dental and orthopedic device industry also face major consumer demands for more functional, bioinstructional, and longer-lasting implants. A significant body of research has been directed towards addressing these concerns by examining the use of polymer additives that enhance calcium phosphate cement properties through the addition of enhanced functionalities.
The number of papers, application and review papers, published on calcium phosphate cement is staggering as is the use of additives. This chapter’s mission is to provide a review of the most relevant developments in this field. The chapter’s focus is on the application of natural and synthetic polymers designed to enhance calcium phosphate cement (CPC) by enhancing CPC’s inherent properties and providing additional functionalities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Liu Y, Lim, Teoh S-H. Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv. 2013;31:688–705.
Cortesini R. Stem cells, tissue engineering and organogenesis in transplantation. Transpl Immunol. 2005;15:81–9.
Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Bioeng. 2012;40:363–408.
Cancedda R, Dozin B, Giannoni P, Quarto R. Tissue engineering and cell therapy of cartilage and bone. Matrix Biol. 2003;22:81–91.
Oryan A, Alidadi S, Moshiri A, Maffuli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J. Orthop Surg Res. 2014;9(18):1–17.
Stevens MM. Biomaterials for bone tissue engineering. Mater Today. 2008;11(5):18–25.
Katagiri BT, Takahashi N. Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis. 2002;8:147–59.
Rose FR, Hou Q, Oreffo RO. Delivery systems for bone growth factors - the new players in skeletal regeneration. J Pharm Pharmacol. 2004;56:415–27.
Matassi F, et al. New biomaterials for bone regeneration. Clin Cases Min Bone Metab. 2011;8:21–4.
Khashaba RM, Moussa MM, Mettenburg DJ, Rueggeberg FA, Chutkan NB, Borke JL. Polymeric-calcium phosphate cement composites-material properties: in vitro and in vivo investigations. Int J Biomater. 2010; 2010: 691452, 14 pages.
Puppi D, Chiellini F, Piras AM, Chiellini E. Polymeric materials for bone and cartilage repair. Prog Poly Sci. 2010;35:403–40.
Griffin MF, Kalaskar DM, Seifalian A, Butler PE. An update on the application of nanotechnology in bone tissue engineering. Open Orthop J. 2016;10(Suppl-3, M4):836–48.
Rosa N, Simoes R, Magalhães FD, Marques AT. From mechanical stimulus to bone formation: a review. Med Eng Phys. 2015;37(8):719–28. https://doi.org/10.1016/j.medengphy.2015.05.015.
Ginebra MP. Cements as bone repair materials. In: Planell JA, editor. Bone repair biomaterials. Cambridge, England: Woodhead Publishing Limited; 2009.
Hollinger J, Einhorn TA, Doll F, Sfeir C. Bone tissue engineering. Boca Raton, FL: CRC Press; 2004.
Pilliar RM, Filiaggi M, Wells JD, Grynpas MD, Kandel RA. Porous calcium polyphosphate scaffolds for bone substitute applications in vitro characterization. Biomaterials. 2001;22:963–72.
Foppiano S, Marshall SJ, Marshall GW, Saiz E, Tomsia AP. The influence of novel bioactive glasses on in vitro osteoblast behavior. J Biomed Mater Res. 2004;71A:242–9.
Wang L, Singh M, Bonewald LF, Detamore MS. Signaling strategies for osteogenic differentiation of human umbilical cord mesenchymal stromal cells for 3D bone tissue engineering. J Tiss Eng Regen Med. 2009;3:398–404.
Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int Ed. 2002;41:3130–46.
Barinov S, Komlev VS. Calcium phosphate bone cements. Inorg Mater. 2011;47(13):1470–85.
Bouler JM, Pilet P, Gauthier O, Verron E. Biphasic calcium phosphate ceramics for bone reconstruction: areview of biological response. Acta Biomater. 2017;53:1–12.
Dorozhkin SV. Calcium orthophosphates. J Mater Sci Mater Med. 2007;42(4):1061–95.
LeGeros RZ, Chohayeb A, Shulman A. Apatitic calcium phosphates: possible dental restorative materials. J Dent Res. 1982;61:343.
Link DP, van den Dolder J, van den Beucken JJ, Wolke JG, Mikos AG, Jansen JA. Bone response and mechanical strength of rabbit femoral defects filled with injectable CaP cements containing TGF-b1 loaded gelatin microspheres. Biomaterials. 2008;29:675–82.
Zhao L, Weir MD, Xu HHK. Human umbilical cord stem cell encapsulation in calcium phosphate scaffolds for bone engineering. Biomaterials. 2010;31:3848–57.
Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials. 1999;20:2287–303.
Bohner M. Reactivity of calcium phosphate cements. J Mater Chem. 2007;17(38):3980–92.
Friedman CD, Costantino PD, Takagi S, Chow LC. BoneSource hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res. 1998;43:428–32.
Kühn KD. Properties of bone cement. In: Breusch S, editor. The well-cemented total hip arthroplasty. Heidelberg: Springer MedizinVerlag; 2005. p. 52–9.
Ginebra MP, Traykova T, Planell JA. Calcium phosphate cements: competitive drug carriers for the musculoskeletal system? Biomaterials. 2006;27:2171–7.
O'Dowd-Booth CJ, White J, Smitham P, Khan W, Marsh DR. Bone cement: perioperative issues, orthopaedic applications and future developments. J Perioper Pract. 2011;21(9):304–8.
Constantz BR, Ison IC, Fulmer MT, Poser RD, Smith ST, Van Wagoner M, et al. Skeletal repair by in situ formation of the mineral phase of bone. Science. 1995;267:1796–9.
DiMaio FR. The science of bone cement: a historical review. Orthopedics. 2002;25(12):1399–407.
Komlev VS, Fadeeva IV, Gurin N, Shvorneva LI, Bakunova NV, Barino SM. New calcium phosphate cements based on tricalcium phosphate. Dokl Chem. 2011;437(1):75–8.
Eliaz N, Metok N. Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials. 2017;10(4):334. https://doi.org/10.3390/ma10040334.
Perez RA, Kim HW, Ginebra MP. Polymeric additives to enhance the functional properties of calcium phosphate cements. J Tiss Eng. 2012;3(1):2041731412439555. https://doi.org/10.1177/2041731412439555. published online 20 March.
Maestretti G, Cremer C, Otten P, Jakob RP. Prospective study of standalone balloon kyphoplasty with calcium phosphate cement augmentation in traumatic fractures. Eur Spine J. 2007;16:601–10.
Aral A, Yalçin S, Karabuda ZC, Anil A, Jansen JA, Mutlu Z. Injectable calcium phosphate cement as a graft material for maxillary sinus augmentation: an experimental pilot study. Clin Oral Implants Res. 2008;19:612–7.
Kroeses-Deitman HC, Wolke JG, Spauwen PH, Jansen JA. Closing capacity of cranial bone defects using porous calcium phosphate cement implants in a rabbit animal model. J Biomed Mater Res A. 2006;79:503–11.
Libicher M, Hillmeier J, Liegibel U, Sommer U, Pyerin W, Vetter M. Osseous integration of calcium phosphate in osteoporotic vertebral fractures after kyphoplasty: initial results from a clinical and experimental pilot study. Osteoporos Int. 2006;17:1208–15.
Mermelstein LE, Chow LC, Friedman CD, Crisco JJ. The reinforcement of cancellous bone screws with calcium phosphate cement. J Orthop Trauma. 1996;10:15–20.
Ooms E, Wolke J, Van der Waerden J, Jansen J. Use of injectable calcium-phosphate cement for the fixation of titanium implants: an experimental study in goats. J Biomed Mater Res B Appl Biomater. 2003;66:447–56.
Takemasa R, Kiyasu K, Tani T, Inoue S. Validity of calcium phosphate cement vertebroplasty for vertebral non-union after osteoporotic fracture with middle column involvement. Spine J. 2007;7:148S.
Lewis G. Injectable bone cements for use in vertebroplasty and kyphoplasty: state-of-the-art review. J Biomed Mater Res B Appl Biomat. 2006;76:456–68.
Calcium phosphate: structure, synthesis, properties, and applications. In: Robert B, editor. Heimann: Biochemistry Research Trends; 2012. 498pp. ISBN: 978-1-62257-299-1.
Habraken H, Habibovic P, Epple M, Bohner M. Calcium phosphates in biomedical applications: materials for the future? Mat Today. 2016;19(2):69–87.
Barinov SM. Trends in development of calcium phosphate-based ceramic and composite materials for medical applications: transition to nanoscale. Russian J Gen Chem. 2010;80:666–74.
Dutta PK. Chitin and chitosan for regenerative medicine. In: Springer series on polymer and composite materials. Berlin: Springer; 2015.
Zhang JT, Tancret F, Bouler JM. Fabrication and mechanical properties of calcium phosphate cements (CPC) for bone substitution. Mater Sci Eng. 2011;31(4):740–7.
Driessens FCM, Planell J, Boltong MG, Khairoun I, Ginebra MP. Osteotransductive bone cements. J Eng Med. 1998;212(6):427–35.
Bigi A, Bracci B, Panzavolta S. Effect of added gelatin on the properties of calcium phosphate cement. Biomaterials. 2004;25(14):2893–9.
Rinaudo M. Chitin and chitosan: properties and applications. Prog Poly Sci. 2006;31(7):603–32.
Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T. Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res. 2006;133(2):185–92.
Padois K, Rodriguez F. Effects of chitosan addition to self-setting bone cement. Biomed Mater Eng. 2007;17(5):309–20.
Sun L, Hockin H, Xu K, Takagi S, Chow LC. Fast setting calcium phosphate cement–chitosan composite: mechanical properties. J Biomat Appl. 2007;21(3):299–315. https://doi.org/10.1177/0885328206063687.
Chesnutt BM, Viano AM, Yuan Y, Yang Y, Guda T, Appleford MR, Ong JL, Haggard WO, Bumgardner JD. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. J Biomed Mater Res A. 2009;88(2):491–502.
Al-Bayaty FH, Kamaruddin AA, Ismail MA, Abdulla MA. Formulation and evaluation of a new biodegradable periodontal chip containing thymoquinone in a chitosan base for the management of chronic periodontitis. J Nanomat. 2013;2013:397308., 5 pages. https://doi.org/10.1155/2013/397308.
Janmey PA, Winer JP, Weisel JW. Fibrin gels and their clinical and bioengineering applications. J R Soc Interface. 2009;6(30):1–10.
Balakrishnan B, Mohanty M, Umashanker PR, Jayakrishnan A. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials. 2005;26:6335–42.
Cui G, Li J, Lei W, et al. The mechanical and biological properties of an injectable calcium phosphate cement-fibrin glue composite for bone regeneration. J Biomed Mater Res B. 2010;92(2):377–85.
Lopez-Heredia MA, Pattipeilohy J, Hsu S, van der Wieden B, Leewenburg SC, et al. Bulk physicochemical, interconnectivity, and mechanical properties of calcium phosphate cements-fibrin glue composites for bone substitute applications. J Biomed Mat Res A. 2013;101(2):478–90.
Kneser U, Voogd A, Ohnolz J, et al. Fibrin gel-immobilized primary osteoblasts in calcium phosphate bone cement: in vivo evaluation with regard to application as injectable biological bone substitute. Cells Tissues Organs. 2005;179(4):158–69.
Dong J, Cui G, Bi L, Lei W. The mechanical and biological studies of calcium phosphate cement-fibrin glue for bone reconstruction of rabbit femoral defects. Int J Med. 2013;8:1317–24. https://doi.org/10.2147/IJN.S42862.
Lee L-T, Kwan P-C, Chen Y-F, Wong Y-K. Comparison of the effectiveness of autologous fibrin glue and macroporous biphasic calcium phosphate as carriers in the osteogenesis process with or without mesenchymal stem cells. J Chin Med Assoc. 2008;1(2):66–73.
Gholipour H, Meimandi-Parizi A, Oryan A, Bigham SA. The effects of gelatin, fibrin-platelet glue and their combination on healing of the experimental critical bone defect in a rat model: radiological, histological, scanning ultrastructural and biomechanical evaluation. Cell Tiss Bank. 2017:1–16. Epub 2017 Dec 20.
Meimandi-Parizi A, Oryan A, Gholipour H. Healing potential of nanohydroxyapatite, gelatin, and fibrin-platelet glue combination as tissue engineered scaffolds in radial bone defects of rats. Conn Tiss Res. 2017;16:1–13.
Noori A, Ashrafi S, Vaez-Ghaemi R, Hatamian-Zaremi A, Webster TJ. A review of fibrin and fibrin composites for bone tissue engineering. Intern J Nanomed. 2017;12:4937–61. https://doi.org/10.2147/IJN.S12467183.
Gorgieva S, Kokol V. Collagen vs. gelatine-based biomaterials and their biocompatibility: review and perspectives, biomaterials applications for nanomedicine. In: Pignatello R, editor; 2011. ISBN: 978-953-307-661-4.
Unuma H, Matsuchima Y. Preparation of calcium phosphate cement with an improved setting behavior. J Asian Ceramic Soc. 2013;1(1):26–9.
Azami M, Mohamma RE, Fathollah M. Gelatin/hydroxyapatite nanocomposite scaffolds for bone repair. Plast Res. 2010. doi: https://doi.org/10.1002/spepro.003073.
Kim HW, Knowles JC, Kim HE. Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds. J Biomed Mater Res. 2005;A72:136–45.
Kim W, Kim HE, Salih V. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Biomaterials. 2005;26:5221–30. https://doi.org/10.1016/j.biomaterials.2005.01.047.
Habraken WJ, Wolke JG, Mikos AG, et al. Porcine gelatin microsphere/calcium phosphate cement composites: an in vitro degradation study. J Biomed Mater Res B. 2009;91(2):555–61.
Oryan A, Alidadi S, Sadegh B, Mishiri A. Comparative study on the role of gelatin, chitosan and their combination as tissue engineered scaffolds on healing and regeneration of critical sized bone defects: an in vivo study. J Mater Sci Mater Med. 2016;27(10):155–61. https://doi.org/10.1007/s10856-016-5766-6.
Sionkowska A, Skrzyński S, Śmiechowski K, Kołodziejczak A. The review of versatile application of collagen. Polym Adv Technol. 2017;28:4–9. https://doi.org/10.1002/pat.3842.
Zhang J, Liu W, Schnitzler V, Tancret F, Bouler JM. Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties. Acta Biomater. 2013;10(3):1035–49.
Dong C, Lv Y. Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers. 2016;8(2):42. https://doi.org/10.3390/polym8020042.
Ferreira AM, Gentile P, Chono V, Ciardelli G. Collagen for bone tissue regeneration. Acta Biomat. 2012;8(9):3191–200.
Wang P, Zhao L, Liu J, Weir MD, Zhou X, Xu H. Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res. 2014;2:14017. https://doi.org/10.1038/boneres.2014.17.
Perez RA, Altankov G, Jorge-Herrero E, Ginebra MP. Micro- and nanostructured hydroxyapatite–collagen microcarriers for bone tissue-engineering applications. J Tissue Eng Regen Med. 2013;7:353–61. https://doi.org/10.1002/term.530.
Walsh WR, Oliver RA, Christou C, Lovric V, Walsh ER, Prado GR, et al. Critical size bone defect healing using collagen–calcium phosphate bone graft materials. PLoS One. 2017;12(1):e0168883. https://doi.org/10.1371/journal.pone.0168883.
Palmer I, Nelson J, Schatton W, Dunne NJ, Buchanan F, Clarke SA. Biocompatibility of calcium phosphate bone cement with optimised mechanical properties. J Biomed Mater Res B Appl Biomater. 2015:1–8. https://doi.org/10.1002/jbm.b.33370.
Maas M, Guo P, Keeney M, et al. Preparation of mineralized nanofibers: collagen fibrils containing calcium phosphate. Nano Lett. 2011;11:1383–8.
Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials. 2001;22:1705–11.
Aberg J, Brisby H, Henriksson HB, et al. Premixed acidic calcium phosphate cement: characterization of strength and microstructure. J Biomed Mater Res B. 2010;93(2):436–41.
Carey LE, Xu HH, Simon CG, et al. Premixed rapid-setting calcium phosphate composites for bone repair. Biomaterials. 2005;26(24):5002–14.
Takagi S, Chow LC, Hirayama S, et al. Premixed calcium–phosphate cement pastes. J Biomed Mater Res B. 2003;67(2):689–96.
Tozzi G, Mori A, Oliveira A, Roldo M. Composite hydrogels for bone regeneration. Materials. 2016;9:267. https://doi.org/10.3390/ma9040267.
Short AR, et al. Hydrogels that allow and facilitate bone repair, remodeling, and regeneration. J Mater Chem B Mater Biol Med. 2015;3(40):7818–30.
Planell JA, Best SM, Lacroix D, Merolli A. Bone repair biomaterials. Amsterdam: CRC Press, Elsevier; 2009.
Nedde AT, Julich-Gruner KK, Leindlein A. Combinations of biopolymers and synthetic polymers for bone regeneration. Chapter 4. In: Dubruel P, Vlierberghe SV, editors. Biomaterials for bone regeneration: novel techniques and applications. Amsterdam: Elsevier; 2014. p. 87–110. https://doi.org/10.1533/9780857098104.1.87.
Susana Cortizo M, Soledad Belluzo M. Biodegradable polymers for bone tissue engineering. In: Goyanes N, D’Accorso NB, editors. Industrial applications of renewable biomass products. Berlin: Springer International Publishing AG; 2017. p. 47–74S. https://doi.org/10.1007/978-3-319-61288-1_2.
Kroeze RJ, Helder MN, Govaert LE, Smit TH. Biodegradable polymers in bone tissue engineering. Mater. 2009;2:833–56. https://doi.org/10.3390/ma2030833.
Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M. Biodegradable materials for bone repair and tissue engineering applications. Mater. 2015;8(9):5744–94. https://doi.org/10.3390/ma8095273.
Engstrand J, Persson C, Engqvist H. Influence of polymer addition on the mechanical properties of premixed calcium phosphate cement. Biomatter. 2013;3(4):e27249. https://doi.org/10.4161/biom.27249.
Geffers M, Groll J, Gbureck U. Reinforcement strategies for load-bearing calcium phosphate biocements. Materials. 2015;8:2700–17. https://doi.org/10.3390/ma8052700.
Sun J, Tan H. Alginate-based biomaterials for regenerative medicine applications. Materials. 2013;6:1285–308.
Wang L, Wang P, Weir MD, et al. Hydrogel fibers encapsulating human stem cells in an injectable calcium phosphate scaffold for bone tissue engineering. Biomed Mater. 2016;11:065008.
Venkstesan J, Nithya R, Kim SK. Role of alginate in bone tissue engineering. Adv Food Nutr Res. 2014;73:45–57.
Venkatesan J, Bhatnagarb I, Manivasagana P, Kanga K-H, Kima SK. Alginate composites for bone tissue engineering: a review. Int J Biol Macromol. 2015;72:269–81.
Zhao L, Weir MD, Xu HHK. An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering. Biomaterials. 2010;31:6502–10.
Thein-Han WW, WahWah MD, Weir CG, Wu HH. Novel non-rigid calcium phosphate scaffold seeded with umbilical cord stem cells for bone tissue engineering. J Tiss Eng Regen. 2013;7(10):777–87.
Wang X, Chen L, Xiang H, et al. Influence of anti-washout agents on the rheological properties and injectability of a calcium phosphate. J Biomed Mater Res B. 2007;81(2):410–8.
Karnik S, Jammalamadaka U, Tappa K, Mills DK. Performance evaluation of nanoclay enriched anti-microbial hydrogels for biomedical applications. Heliyon. 2016;2(2):e00072. https://doi.org/10.1016/j.heliyon.2016.e00072.
Karnik S, Mills DK. Nanoenhanced hydrogel system with sustained release capabilities. J Biomed Mater Res A. 2015;103(7):2416–26.
Wang P, Song Y, Weir MD, Sun J, Zhao L, Simon CG, Xu HH, et al. A self-setting iPSMSC-alginate-calcium phosphate paste for bone tissue engineering. Dental mater. 2018;32(2):252–63.
Costa-Pinto AR, Reis RL, Neves NM. Scaffolds based bone tissue engineering: the role of chitosan. Tiss Eng B Rev. 2011;17:331–47.
Muzzarelli RAA. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym. 2009;76:167182.
Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, et al. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials. 2006;27:6123–37.
Zeng S, Liu L, Shi Y, Qiu J, Fang W, Rong M, Guo Z, Gao W. Characterization of silk fibroin/chitosan 3D porous scaffold and in vitro cytology. PLoS One. 2015;10(6):e0128658. Epub 2015 Jun 17.
Li J, Wang Q, Gu Y, Zhu Y, Chen L, Chen Y. Production of composite scaffold containing silk fibroin, chitosan, and gelatin for 3D cell culture and bone tissue regeneration. Med Sci Monit. 2017;23:5311–20.
Frihberg ME, Katsman A, Mondrinos MJ, Stabler CT, Hankenson KD, Oristaglio JT, Lelkes PI. Osseointegrative properties of electrospun hydroxyapatite-containing nanofibrous chitosan scaffolds. Tissue Eng Part A. 2015;21(5–6):979–81.
Zhang Y, Reddy VJ, Wong SY, Li X, Su B, Ramakrishna S, et al. Enhanced biomineralization in osteoblasts on a novel electrospun biocomposite nanofibrous substrate of hydroxyapatite/collagen/chitosan. Tissue Eng Part A. 2010;16:1949–60.
Venugopal J, Low S, Choon AT, Sampath Kumar TS, Ramakrishna S. Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers. J Mater Sci Mater Med. 2008;19:2039–46.
Wnek GE, Bowlin GL. Encyclopedia of biomaterials and biomedical engineering. New York: Marcel Dekker; 2004.
Bleek K, Taubert A. New developments in polymer-controlled, bioinspired calcium phosphate mineralization from aqueous solution. Acta Biomater. 2013;9(5):6283–321.
Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science: aintroduction to materials in medicine. 2nd ed. London: Elsevier Academic Press; 2004.
Rebelo R, Fernandesa M, Fangueiroa R. Biopolymers in medical implants: a brief review. Process Eng. 2017;200:236–43.
Tereshchenko VP, Kirlova A, Sadavoy MA, Larionov PM. The materials used in bone tissue engineering. In: AIP Conference Proceedings. vol. 1688, 030022; 2015. doi: https://doi.org/10.1063/1.4936017
Melinda Molnar R, Bodnar M, Hartmann JF, Borbely J. Preparation and characterization of poly(acrylic acid)-based nanoparticles. Coll Poly Sci. 2009;287(6):739–44.
Verma D, Katti K, Mohanty B. Mechanical properties of biomimetic composites for bone tissue engineering. MRS Proc. 2004;844:Y6.2. https://doi.org/10.1557/PROC-844-Y6.2.
Stevens B, Yang Y, Mohandas A, Stucker B, Nguyen KT. A review of materials, fabrication method and strategies used to enhance bone regeneration. J Biomed Mater Res. 2008;85B:573–82.
He H, Qiao Z, Liu C. Accelerating biodegradation of calcium phosphate cement. In: Liu C, He H, editors. Developments and applications of calcium phosphate bone cements, Chapter. 5. Singapore: Springer; 2018. p. 227–56.
Shim J-H, Moon T-S, Yun M-J, Jeon Y-C, Jeong C-M, Cho D-W, Huh J-B. Stimulation of healing within a rabbit calvarial defect by a PCL/PLGA scaffold blended with TCP using solid freeform fabrication technology. J Mater Sci Mater Med. 2012;23:2993–3002.
Park SA, Lee SH, Kim WD. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system. Bioprocess Biosyst Eng. 2011;34:505. https://doi.org/10.1007/s00449-010-0499-2.
Liao HT, Lee MY, Tsai WW, Wang HV, Lu WC. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. J Tissue Eng Regen Med. 2016;10(10):E337–53. https://doi.org/10.1002/term.1811. Epub 2013 Aug 16.
Nyberg E, Rindone A, Dorafshar A, Grayson WL. Comparison of 3D-printed poly-ɛ-caprolactone scaffolds functionalized with tricalcium phosphate, hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix. Tissue Eng Part A. 2017;23(11–12):503–14.
Ghosh SB, Bandyopadhyay-Ghosh S, Sain M. Composites. Chapter 18. In: Auras R, Lim L-T, Selke SEM, Tsuji H, editors. Poly(lactic acid): synthesis, structures, properties, processing, and applications. Hoboken, NJ: Wiley; 2010. https://doi.org/10.1002/9780470649848.
Adeosun SO, Lawal GI, Gbenebor P. Characteristics of biodegradable implants. J Min Mater Charact Eng. 2014;2:88–106.
Rajendran T, Venugopalan S. Role of polylactic acid in bone regeneration–a systematic review. J Pharm Sci Res. 2015;7(11):960–6.
Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–31.
Tanataweethum N, Liu W, Goebel W, Li D, Chu T. Fabrication of poly-l-lactic acid/dicalcium phosphate dihydrate composite scaffolds with high mechanical strength—implications for bone tissue engineering. J Funct Mater. 2015;6(4):1036–53. https://doi.org/10.3390/jfb6041036.
Liu X, Liu H-Y, Lian X, Shi X-L, Wang W, Cui F-Z, Zhang Y. Osteogenesis of mineralized collagen bone graft modified by PLA and calcium sulfate hemihydrate: in vivo study. J Biomater Appl. 2012;28(1):12–9.
Montjovent M-O, Silke S, Mathieu L, Scaletta C, Scherberich S, et al. Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering. Bone. 2008;42:554–64.
Lou C-W, Chen W-C, Luo C-T, Huang C-C, Lin JH. Compressive strength of porous bone cement/polylactic acid composite bone scaffolds. Appl Mech Mater. 2013;365-366:1062–5.
Danoux CB, Barberi D, Yuan H, de Brulin JD, van Blitterswilk CA, et al. In vitro and in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration. Biomaterials. 2014;4:e27664. PMC Web 22 Feb. 2018.
Gentile P, Chiono V, Carmagnola I, Hatton PV. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Intern J Mol Sci. 2014;15(3):3640–59. https://doi.org/10.3390/ijms15033640.
Sun X, Chu X, Ye Q, Wang C. Poly(lactic-co-glycolic acid): applications and future prospects for periodontal tissue regeneration. Polymers. 2017;9:189. https://doi.org/10.3390/polym9060189.
Ortega-Oiler I, Padial-Molina M, Galindo-Moreno P, O’Valle F, et al. Bone regeneration from PLGA micro-nanoparticles. Biomed Res Int. 2015;2015:415289. https://doi.org/10.1155/2015/415289.
Kane RJ, Weiss-Bilka HE, Meagher MJ, et al. Hydroxyapatite reinforced collagen scaffolds with improved architecture and mechanical properties. Acta Biomater. 2015;17:16–25. https://doi.org/10.1016/j.actbio.2015.01.031.
Demirci DS, Bayir Y, Halici Z, Karakus E, et al. Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering. Mater Sci Eng C. 2014;44:246–53. https://doi.org/10.1016/j.msec.2014.08.035.
Mousa M, Evans ND, Oreffo ROC, Lawson JI. Clay nanoparticles for regenerative medicine and biomaterial design: a review of clay bioactivity. Biomaterials. 2018;159:204–14. https://doi.org/10.1016/j.biomaterials.2017.12.024.
Ruiz-Hitzky E, Aranda P, Dardera M, Rytwobc G. Hybrid materials based on clays for environmental and biomedical applications. J Mater Chem. 2010;20:9306–21.
Newman P, Minett HA, Ellis-Behnke R, Zreiqat H. Carbon nanotubes: their potential and pitfalls for bone tissue regeneration and engineering. Nanomedicine. 2013;9(8):1139–58.
Tanaka M, Sato Y, Haniu H, Sato H, et al. A three-dimensional block structure consisting exclusively of carbon nanotubes serving as bone regeneration scaffold and as bone defect filler. PLoS One. 2017;12(2):e0172601. https://doi.org/10.1371/journal.pone.0172601.
Mukharjee S, Kumar S, Kundu B, Chanda A, Sen S, Das PK. Enhanced bone regeneration with carbon nanotube reinforced hydroxyapatite in animal model. J Mech Behav Biomed Mater. 2016;60:243–55.
Venkatesan J, Pallela R, Kim SK. Applications of carbon nanomaterials in bone tissue engineering. J Biomed Nanotechnol. 2014;10:3105–23.
Liu M, Jia Z, Jia D, Zhou C. Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci. 2014;39:1498–525.
Leporatti S. Halloysite clay nanotubes as nano-bazookas for drug delivery. Polym Int. 2017;66:1111–8. https://doi.org/10.1002/pi.5347.
Fan L, Zhang J, Wang A. In situ generation of sodium alginate/hydroxyapatite/halloysite nanotubes nanocomposite hydrogel beads as drug-controlled release matrices. J Mater Chem B. 2013;1:6261–70.
Lvov Y, Wang W, Zhang L, Fakhrullin R. Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater. 2016;28:1227–50.
Mills DK, Jammalamadaka U, Tappa UK, Weisman JA. Studies on the cytocompatibility, mechanical and antimicrobial properties of 3D printed poly(methyl methacrylate) beads. Bioactive Mater. 2018;3(1):157–66.
Naumenko EA, Guryanov ID, Yendluri R, Lvov YM, Fakhrullin RF. Clay nanotube-biopolymer composite scaffolds for tissue engineering. Nanoscale. 2016;8:7257–71.
Liu M, Wu C, Jiao Y, Xiong S, Zhou C. Chitosan-halloysite nanotubes nanocomposite scaffolds for tissue engineering. J Mater Chem B. 2013;1:2078–89.
Massaro M, Lazzara G, Milioto S, Noto R, Riela S. Covalently modified halloysite clay nanotubes: synthesis, properties, biological and medical applications. J Mater Chem B. 2017;5:2867–82.
Jammalamadaka U, Tappa K, Mills DK. Calcium phosphate/clay nanotube bone cement with enhanced mechanical properties and sustained drug release. In: Zoveidavianpoor M, editor. Clay science and engineering. London: InTech Publishers. (in press) Publication date: May 2018.
Karnik S, Mills DK. Clay nanotubes as growth factor delivery vehicle for bone tissue engineering. J Nanomed Nanotechnnol. 2013;4(6):102.
Tappa K, Jammalamadaka U, Mills DK. Formulation and evaluation of nanoenhanced anti-bacterial calcium phosphate bone cements. In: Webster T, Li B, editors. Orthopedic biomaterials. New York, NY: Springer. (in press) May 2018.
Tomas H, Alves CS, Rodrigues J. Laponite®: a key nanoplatform for biomedical applications?. Nanomed Nanotech Biol Med. 2017, in press.
Jung H, Kim HM, Choy YB, Hwang SJ, Choy JH. Itraconazole-laponite: kinetics and mechanism of drug release. Appl Clay Sci. 2008;40(1–4):99–107.
Wang C, Wang S, Li K, Lu Y, Li J, Zhang Y, Li J, Liu X, Shi X, Zhao Q. Preparation of laponite bioceramics for potential bone tissue engineering applications. PLoS One. 2014;23:e99585. https://doi.org/10.1371/journal.pone.0099585.
Xavier JR, Thakur T, Desai P, Jaiswal MK, Sears N, Cosgriff-Hernandez E, Kaunas R, Gaharwar AK. Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano. 2015;9(3):3109–18. https://doi.org/10.1021/nn507488s.
Thorpe A, Freeman C, Farthing P,Hatton P, Brook I, Sammon C, Le Maitre CL. Osteogenic differentiation of human mesenchymal stem cells in hydroxyapatite loaded thermally triggered, injectable hydrogel scaffolds to promote repair and regeneration of bone defects. In: Frontiers in bioengineering and biotechnology. Conference abstract: 10th world biomaterials congress; 2016. doi: 10.3389/conf.FBIOE.2016.01.00636
Tao L, Zhonglong L, Ming X, Zezheng Y, Zhiyuan L, Xiaojun Z. In vitro and in vivo studies of a gelatin/carboxymethyl chitosan/LAPONITE® composite scaffold for bone tissue engineering. RSC Adv. 2017;7:54100.
Jayrajsinh S, Shankar G, Agrawal YK, Bakre L. Montmorillonite nanoclay as a multifaceted drug-delivery carrier: a review. J Drug Delivery Sci Technol. 2017;39:200–9.
Aguzzi C, Cerezo P, Viseras C, Caramella C. Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci. 2007;36:22–36. https://doi.org/10.1016/j.clay.2006.06.015.
Baker KC, Maerz T, Saad H, Shaheen P, Kannan RM. In vivo bone formation by and inflammatory response to resorbable polymer-nanoclay constructs. Nanomedicine. 2015;11(8):1871–81. https://doi.org/10.1016/j.nano.2015.06.012. Epub 2015 Jul 26.
Olad A, Azhar FF. The synergetic effect of bioactive ceramic and nanoclay on the properties of chitosan–gelatin/nanohydroxyapatite–montmorillonite scaffold for bone tissue engineering. Ceram Int. 2014;40(7):10061–72.
Kar S, Kaur T, Thirugnanam A. Microwave-assisted synthesis of porous chitosan–modified montmorillonite–hydroxyapatite composite scaffolds. Inter J Biol Macromol. 2016;82:628–36.
Kwon SY, Cho EH, Kim SS. Preparation and characterization of bone cements incorporated with montmorillonite. J Biomed Mater Res. 2007;83B:276–84. https://doi.org/10.1002/jbm.b.30793.
Sharma C, Dinda AK, Potdar PD, Chu C-F, Mishra NC. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan–gelatin–alginate–hydroxyapatite for bone tissue engineering. Mater Sci Eng C. 2016;64:416–27.
Hamzah AA, Selvarajan RS, Majlis BY. Graphene for biomedical applications: a review. Sains Malaysiana. 2017;46(7):1125–39. https://doi.org/10.17576/jsm-2017-4607-16.
Pattnaik S, Swain K, Linc Z. Graphene and graphene-based nanocomposites: biomedical applications and biosafety. J Mater Chem B. 2016;4:7813–31.
Nasrin S, Hasanzadeh M. Graphene and its nanostructure derivatives for use in bone tissue engineering: recent advances. J Biomed Mater Res Part A. 2016;104A:1250–75.
Reina G, Criado A, Prato M, Gonzalez-Domınguez JM, Vazques E, Bianco A. Promises, facts and challenges for graphene in biomedical applications. Chem Soc Rev. 2017;46:4400–16.
Kalbacova M, Bronz A, Kong J, Kalbac M. Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon. 2010;48:4323–9.
Nayak TR, Andersen H, Makam VS, Khaw C, Bae S, Xu X, P-LR E, Ahn JH, Hong BH, Pastorin G. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano. 2011;5(6):4670–8.
Dubey N, Bentini R, Islam I, Cao T, Neto AHC, Rosa V. Graphene: a versatile 531 carbon-based material for bone tissue engineering. Stem Cells Int. 2015;2015:804213.
Tommila M, Jokilammi A, Penttinen R, Ekholm E. Cellulose—a biomaterial with cell-guiding property. In: van de Ven T, Godbout L. Cellulose-medical, pharmaceutical and electronic applications, chapter 5. Croatia: InTech. ISBN: 978-953-51-1191-7. 314 pages.
Beladia F, Saber-Samandarib S, Saber-Samandaric S. Cellular compatibility of nanocomposite scaffolds based on hydroxyapatite entrapped in cellulose network for bone repair. Mater Sci Eng C. 2017;75:385–92.
Teti G, Orsini G, Mazzotti A, Belmonte M, Ruggeri A. 3D polysaccharide based hydrogel for bone tissue engineering. Ital J Anat Embryol. 2015;120(1):129. https://doi.org/10.13128/IJAE-17000.
Novotna K, Havelka P, Sopuch T, Kolarova K, et al. Cellulose-based materials as scaffolds for tissue engineering. Cellulose. 2013;20(5):2263–78.
Aravamudhan A, Ramos DM, Nip J, Kalajzic I, Kumbar SG. Micro-nanostructures of cellulose-collagen for critical sized bone defect healing. Macromol Biosci. 2018;18(2). https://doi.org/10.1002/mabi.201700263. Epub 2017 Nov 27.
Moreau JL, Weir MD, Xu HH. Self-setting collagen-calcium phosphate bone cement: mechanical and cellular properties. J Biomed Mater Res. 2009;91A:605–13.
Kikuchi M, Ikoma T, Itoh S, Matsumoto HN, Koyama Y, Takakuda K, Shinomiya K, Tanaka J. Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen. Compos Sci Technol. 2004;64(6):819–25.
Kikuchi M. Hydroxyapatite/collagen bone-like nanocomposite. Biol Pharm Bull. 2013;36(11):1666–9.
Sarkar SK, Lee BT. Hard tissue regeneration using bone substitutes: an update on innovations in materials. Korean J Intern Med. 2015;30:279–93. https://doi.org/10.3904/kjim.2015.30.3.279.
Bohner M, Baroud G. Injectability of calcium phosphate pastes. Biomaterials. 2005;26:1553–63.
Blokhuis TJ. Formulations and delivery vehicles for bone morphogenetic proteins: latest advances and future directions. Injury. 2009;40(Suppl 3):S8–11.
Kretlow JD, Young S, Klouda L, Wong M, Mikos AG. Injectable biomaterials for regenerating complex craniofacial tissues. Adv Mater. 2009;21:3368–93.
Liu M, Zeng X, Ma C, Yi H, Zeeshan A, et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Research. 2017;5:17014–32. PMC. Web 27 Feb. 2018.
Chen L, Shen R, Komasa S, Xue Y, et al. Drug-loadable calcium alginate hydrogel system for use in oral bone tissue repair. In: Hardy JG, editor. Inter J Mol Sci. 2017; 8(5): 989. PMC. Web. 27 Feb 2018.
Bi L, Cheng W, Fan H, Pei G. Reconstruction of goat tibial defects using an injectable tricalcium phosphate/chitosan in combination with autologous platelet-rich plasma. Biomaterials. 2010;31(12):3201–11.
Martínez-Sanz E, Ossipov DA, Hilborn J, Larsson S, Jonsson KB, Varghese OP. Bone reservoir: injectable hyaluronic hydrogels for minimal invasive bone augmentation. J Cont Rel. 2011;152(2):232–40.
Hanninka G, Chris Arts JJ. Bioresorbability, porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration? Injury. 2011;42(Suppl. 2):S22–5.
Yasmeen S, lo MK, Bajarcharya S, Roldo M. Injectable scaffolds for bone regeneration. Langmuir. 2014;30(43):12977–85. https://doi.org/10.1021/la503057w.
Polo-Corrales L, Latorre-Esteves M, Ramirez JE. Scaffold design for bone regeneration. J Nanosci Nanotechnol. 2014;14(1):15–56.
Devescovi V, Leonardi E, Ciapetti G, Cenni E. Growth factors in bone repair. Musculoskel Surg. 2008;92:161–8.
Vo TN, Kasper FK, Mikos AG. Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliv Rev. 2012;64(12):1292–309. https://doi.org/10.1016/j.addr.2012.01.016.
Rahman CV, Ben-David D, Dhillon A, Kuhn G, Gould TW, et al. Controlled release of BMP-2 from a sintered polymer scaffold enhances bone repair in a mouse calvarial defect model. J Tissue Eng Regen Med. 2014;8(1):59–66.
Santo VE, Gomes ME, Mano JF, Reis RL. Controlled release strategies for bone, cartilage, and osteochondral engineering—Part II: challenges on the evolution from single to multiple bioactive factor delivery. Tissue Eng B Rev. 2013;19(4):327–52. https://doi.org/10.1089/ten.teb.2012.0727.
Majewski RL, Zhang W, Ma X, Ciu A, Ren W, Markel DC. Bioencapsulation technologies in tissue engineering. J Appl Biomater Funct Mater. 2016;14(4):e395–403. https://doi.org/10.5301/jabfm.5000299.
Nicodemus GD, Bryant SJ. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng B Rev. 2008;14(2):149–65. https://doi.org/10.1089/ten.teb.2007.0332.
Jimi E, Hirata S, Osawa K, Terashita M, Kitamura C, Fukushima H. The current and future therapies of bone regeneration to repair bone defects. Int J Dent. 2012;2012: 148261, 7 pages. doi:https://doi.org/10.1155/2012/148261.
Kolambkara YM, Dupont KM, Boerckle JD, Huebsch N, Mooney DJ, et al. An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials. 2011;32(1):65–74.
Bendtsen ST. Alginate hydrogels for bone tissue regeneration. 2017. Doctoral Dissertations. 1409.http://digitalcommons.uconn.edu/dissertations/1409
Kim J, Kim IS, Cho TH, Lee KB, Hwang SJ, et al. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials. 2007;28(10):1830–7.
Włodarczyk-Biegun MK, Farbod K, Werten MWT, Slingerland CJ, de Wolf FA, van den Beucken JP, et al. Fibrous hydrogels for cell encapsulation: a modular and supramolecular approach. PLoS One. 2016;11(5):e0155625. https://doi.org/10.1371/journal.pone.0155625.
Hamlet SM, Vaquette C, Shah A, Hutmacher DW, Ivanovski S. 3-Dimensional functionalized polycaprolactone-hyaluronic acid hydrogel constructs for bone tissue engineering. J Clin Periodontol. 2017;44(4):428–37. https://doi.org/10.1111/jcpe.12686.
Burdick JA, Anseth K. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials. 2002;23(22):4513–23.
Yamamuro Y, Hench LL, Wilson J. Bioactive glasses and glass ceramics. In: Handbook of bioactive ceramics, vol. 1. Boca Raton: CRC Press; 1990.
Vallet-Regí M, Ruiz-González L, Izquierdo-Barba I, et al. Revisiting silica based ordered mesoporous materials: medical applications. J Mater Chem. 2006;16:26–31.
Gerhardt L-C, Boccaccini AR. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials. 2010;3:3867–910. https://doi.org/10.3390/ma3073867.
Kim HW, Kim HE, Knowles JC. Production and potential of bioactive glass nanofibers as a next-generation biomaterial. Adv Funct Mater. 2006;16(12):1529–35. https://doi.org/10.1002/adfm.200500750.
Christkiran, Reardon PJ, Konwarh R, Knowles JC, Mandal BB. Mimicking hierarchical complexity of the osteochondral interface using electrospun silk–bioactive glass composites. ACS Appl Mater Interfac. 2017;9(9):8000–13.
Price CT, Koval KJ, Langford JR. Silicon: a review of Its potential role in the prevention and treatment of postmenopausal osteoporosis. Int J Endocrinol. 2013;2013:316783., 6 pages. https://doi.org/10.1155/2013/316783.
Price CT, Langford JR, Liporace FA. Essential nutrients for bone health and a review of their availability in the average North American diet. Open Orthopaed J. 2012;6:143–9.
Rodrigues AI, Reis RL, van Blitterswijk CA, Leonor IB, Habibović P. Calcium phosphates and silicon: exploring methods of incorporation. Biomater Res. 2017;21(6):1–11.
Izquierdo-Barba I, Colilla M, Vallet-Regí M. Nanostructured mesoporous silicas for bone tissue regeneration. J Nanomat. 2008, . 2008: 106970, 14 pages. doi: 10.1155/2008/106970.
Yan X, Yu C, Zhou X, Tang J, Zhao D. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew Chem Int. 2004;43(44):5980–4.
Parra J, García Páez IH, De Aza AH, Baudin C, Rocío Martín MM, Pena P. In vitro study of the proliferation and growth of human fetal osteoblasts on Mg and Si co-substituted tricalcium phosphate ceramics. J Biomed Mater Res Part A. 2017;105A:2266–75.
Aparicio JL, Rueda C, Manchon A, et al. Effect of physicochemical properties of a cement based on silicocarnotite/calcium silicate on in vitro cell adhesion and in vivo cement degradation. Biomed Mater. 2016;11:045005.
Yu L, Li Y, Zhao K, Tang Y, Cheng Z, Chen J, Wu Z. A novel injectable calcium phosphate cement-bioactive glass composite for bone regeneration. PLoS One. 2013;8(4):e62570. https://doi.org/10.1371/journal.pone.0062570.
Zhou X, Zhang N, Mankoci S, Sahai N. Silicates in orthopedics and bone tissue engineering materials. J Biomed Mater Res Part A. 2017;105A:2090–102.
Bose S, Fielding G, Tarafder S, Bandyopadhyay A. Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends in Biotechnol. 2013;31:594–605. https://doi.org/10.1016/j.tibtech.2013.06.005.
Tran N, Webster TJ. Increased osteoblast functions in the presence of hydroxyapatite-coated iron oxide nanoparticles. Acta Biomater. 2011;7(3):1298–306.
Midde S. Osteoblast functionality on bioactive TiO2 nanosubstrates. MS Thesis, Louisiana Tech University, Ruston LA. 71272.
Goto K, et al. Bioactive bone cements containing nano-sized titania particles for use as bone substitutes. Biomaterials. 2005;26(33):6496–505.
Shiad M, Chen Z, Farnaghib S, Friis T, Mao X, et al. Copper-doped mesoporous silica nanospheres, a promising immunomodulatory agent for inducing osteogenesis. Acta Biomater. 2015;30:334–44.
Swetha M, Sahithi K, Moorthi A, Saranya N, Saravanan S, et al. Synthesis, characterization, and antimicrobial activity of nano-hydroxyapatite-zinc for bone tissue engineering applications. J Nanosci Nanotechnol. 2012;12:167–72.
Baria A, Bloisebec N, Firilla S, Novajraa G, Vaellet-Regid M, et al. Copper-containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration. Acta Biomater. 2017;55:493–504.
Ishimi Y. Nutrition and bone health. Magnesium and bone. Clin Calc. 2010, 20(5): 762–7. CliCa1005762767.
Weng L, Webster TJ. Nanostructured magnesium has fewer detrimental effects on osteoblast function. Int J Nanomedicine. 2013;8:1773–81. https://doi.org/10.2147/IJN.S39031.
Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27:1728–34. https://doi.org/10.1016/j.biomaterials.2005.10.003.
Malladi L, Mahapatro A, Gomes AS. Fabrication of magnesium-based metallic scaffolds for bone tissue engineering. Mater Technol. 2017;33(2):173–82. https://doi.org/10.1080/10667857.2017.1404278.
Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater. 2008;24:299–308.
Al-Amleh, Lyons K, Swain M. Clinical trials in zirconia: a systematic review. J Oral Rehabil. 2010;37:641–52.
Hulbert SF. The use of alumina and zirconia in surgical implants. In: Hench LL, Wilson J, editors. An Introduction to bioceramics. Singapore: World Scientific; 1993. p. 25–40.
Padovan LEM, Ribero Junior MA, Sartori EM, Caludio M. Bone healing in titanium and zirconia implants surface: a pilot study on the rabbit tibia. RSBO. 2013;10(2):110–5.
Ham AW, Harris WR. Repair and transplantation of bone. Biochem PhysiolBone. 2012;3:337.
Somaiya R, Kaur G. Future of bone repair. Bone Tissue Regen Insight. 2015;6:107. https://doi.org/10.4137/BTRi.s12333.
Bohner B. Resorbable biomaterials as bone graft substitutes. Mat Today. 2009;13(1):24–30. https://doi.org/10.1016/S1369-7021(10)70014-6.
Lee KY, Park M, Kim HM, Lim YJ, Chun HJ, Kim H, et al. Ceramic bioactivity: progresses, challenges and perspectives. Biomed Mater. 2006;1:R31–7.
Fernandez-Yaguea MA, Abba SA, McNamarab L, Zeugolisa D, Manus AP, Biggs MJ. Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Adv Drug Del Rev. 2015;84:1–19.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Mills, D.K. (2018). The Role of Polymer Additives in Enhancing the Response of Calcium Phosphate Cement. In: Li, B., Webster, T. (eds) Orthopedic Biomaterials . Springer, Cham. https://doi.org/10.1007/978-3-319-89542-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-89542-0_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-89541-3
Online ISBN: 978-3-319-89542-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)