Advertisement

A Plausibly Deniable Encryption Scheme Utilizing PUF’s Thermo-Sensitivity

  • Changting Li
  • Zongbin Liu
  • Lingchen Zhang
  • Cunqing Ma
  • Liang Zheng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10631)

Abstract

Deniable encryption is proposed to protect sensitive data against adversaries, even when the user has been coerced to reveal his private keys and other random parameters. However, current deniable encryption schemes or techniques either require the user to remember some tedious random parameters used in encryption or demand special designs in the file system. Any abnormality in the user’s behavior or in the file system tend to arouse suspicion, thus reduce the persuasion of the decrypted data. To cheat the adversary convincingly, we innovatively utilize the thermos-sensitivity of Physically Unclonable Functions (PUFs), to propose a novel and practical deniable encryption scheme, which enables the encryption system achieve deniability in a very covert way. The proposed scheme will automatically interpret the deniable ciphertext into different plaintexts at different temperatures and does not require any special designs in the file system. Furthermore, we successfully implement our scheme on Xilinx KC705 evaluation boards to prove its feasibility.

Keywords

Deniable encryption Bistable Ring PUF SRAM PUF FPGA 

References

  1. 1.
    Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0052229CrossRefGoogle Scholar
  2. 2.
    Amit, S., Brent, W.: how to use indistinguishability obfuscation: deniable encryption, and more. In: STOC, pp. 475–484 (2014)Google Scholar
  3. 3.
    TrueCrypt.org. Free open source on-the-fly disk encryption software. Version 7.1a, July 2012. http://www.truecrypt.org/
  4. 4.
    Julian, A., Suelette, D., Ralf, W.: Rubberhose Cryptographically Deniable Transparent Disk Encryption System, 15 September 2010. Accessed 21 Oct. 2010Google Scholar
  5. 5.
    Anderson, R., Needham, R., Shamir, A.: The steganographic file system. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 73–82. Springer, Heidelberg (1998).  https://doi.org/10.1007/3-540-49380-8_6CrossRefGoogle Scholar
  6. 6.
    McDonald, A.D., Kuhn, M.G.: StegFS: a steganographic file system for linux. In: Pfitzmann, A. (ed.) IH 1999. LNCS, vol. 1768, pp. 463–477. Springer, Heidelberg (2000).  https://doi.org/10.1007/10719724_32CrossRefGoogle Scholar
  7. 7.
    HweeHwa, P., Kian-Lee, T., Xuan, Z.: Stegfs: a steganographic file system. In: 19th International Conference on Data Engineering, Proceedings, pp. 657–667. IEEE (2003)Google Scholar
  8. 8.
    Adal, C.: BestCrypt IV generation flaw. http://adal.chiriliuc.com/bc_iv_flaw.html
  9. 9.
    Robert, M.: Encrypted hard drives may not be safe. In: IDG News Service, 17 July 2010Google Scholar
  10. 10.
    Daniel, E.H., Wayne, P.B., Kevin, F.: Power-Up SRAM state as an identifying fingerprint and source of true random numbers. IEEE Trans. Comput. 58(9), 1198–1210 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chen, Q., Csaba, G., Lugli, P., Schlichtmann, U., Ruhrmair, U.: The Bistable Ring PUF: a new architecture for strong Physical Unclonable functions. In: IEEE International Symposium on Hardware Oriented Security and Trust–HOST, pp. 134–141. IEEE (2011)Google Scholar
  12. 12.
    Sebastian, R.: Reed-Muller Codes, Carleton University (2003)Google Scholar
  13. 13.
    Roel, M.: Physically Unclonable Functions: Constructions, Properties and Applications. Katholieke Universiteit Leuven, Belgium (2012)zbMATHGoogle Scholar
  14. 14.
    Klonowski, M., Kubiak, P., Kutyłowski, M.: Practical deniable encryption. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 599–609. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-77566-9_52CrossRefGoogle Scholar
  15. 15.
    Dürmuth, M., Freeman, D.M.: Deniable encryption with negligible detection probability: an interactive construction. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 610–626. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_33CrossRefGoogle Scholar
  16. 16.
    Tuyls, P., Škorić, B.: Strong authentication with physical unclonable functions. In: Petković, M., Jonker, W. (eds.) Security, Privacy, and Trust in Modern Data Management, pp. 133–148. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-69861-6_10CrossRefGoogle Scholar
  17. 17.
    Katzenbeisser, S., Petitcolas, F.A.: Information Hiding Techniques for Steganography and Digital Watermarking. Artech House, Inc. (2000)CrossRefGoogle Scholar
  18. 18.
    Howlader, J., Basu, S.: Sender-side public key deniable encryption scheme. In: International Conference on Advances in Recent Technologies in Communication and Computing, pp. 9–13. IEEE (2009)Google Scholar
  19. 19.
    Meng, B., Wang, J.Q.: An efficient receiver deniable encryption scheme and its applications. J. Netw. 5(6), 683–690 (2010)Google Scholar
  20. 20.
    Herkle, A., Becker, J., Ortmanns, M.: Exploiting weak PUFs from data converter nonlinearity—E.g., a multibit CT ΔΣ modulator. IEEE Trans. Circ. Syst. I Regul. Pap. 63(7), 994–1004 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Changting Li
    • 1
    • 2
    • 3
  • Zongbin Liu
    • 2
    • 3
  • Lingchen Zhang
    • 2
    • 3
  • Cunqing Ma
    • 2
    • 3
  • Liang Zheng
    • 1
    • 2
    • 3
  1. 1.School of Cyber SecurityUniversity of Chinese Academy of SciencesBeijingChina
  2. 2.Data Assurance and Communication Security Research CenterBeijingChina
  3. 3.State Key Laboratory of Information Security, Institute of Information EngineeringCASBeijingChina

Personalised recommendations