Authenticated Group Key Agreement Protocol Without Pairing

  • Gaurav Sharma
  • Rajeev Anand Sahu
  • Veronika Kuchta
  • Olivier Markowitch
  • Suman Bala
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10631)


Since the inception of pairing-based constructions in cryptography, the authentication in group key agreement (GKA) protocol has been usually achieved by pairings. But due to high computation cost of pairing such constructions are inefficient for practical implementation, specially for low power devices. Also, in almost all such constructions leakage of both the keys- the long-term secret key and the ephemeral key has not been considered for security guarantee. In this view, construction of an efficient and secure GKA protocol is desired. In this paper, we propose an authenticated GKA protocol without pairing. We have achieved security of the proposed scheme following the most standard and recent security notion namely the EGBG model. In particular, we have proved the authenticated key exchange (AKE) security and the mutual authentication (MA) security with full forward secrecy, considering leakage of both the keys long-term and ephemeral, adopting a comparatively efficient technique, the game hopping technique. Our proposed scheme is more efficient in the view of computation and operation time with compare to the existing similar schemes, hence it is more acceptable for the tiny processors. To the best of our knowledge ours is the first pairing free balanced AGKA protocol secure in the EGBG model.


Group key agreement Authentication Insider security Forward security Mutual authentication Batch verification 


  1. 1.
    Barua, R., Dutta, R., Sarkar, P.: Extending Joux’s protocol to multi party key agreement. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 205–217. Springer, Heidelberg (2003). Scholar
  2. 2.
    Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994). Scholar
  3. 3.
    Bresson, E., Chevassut, O., Pointcheval, D.: Provably authenticated group Diffie-Hellman key exchange — the dynamic case. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 290–309. Springer, Heidelberg (2001). Scholar
  4. 4.
    Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic group Diffie-Hellman key exchange under standard assumptions. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 321–336. Springer, Heidelberg (2002). Scholar
  5. 5.
    Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.-J.: Provably authenticated group Diffie-Hellman key exchange. In: Proceedings of the 8th ACM Conference on Computer and Communications Security, pp. 255–264. ACM (2001)Google Scholar
  6. 6.
    Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution system. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286. Springer, Heidelberg (1995). Scholar
  7. 7.
    Choi, K.Y., Hwang, J.Y., Lee, D.H.: Efficient ID-based group key agreement with bilinear maps. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 130–144. Springer, Heidelberg (2004). Scholar
  8. 8.
    Debiao, H., Jianhua, C., Jin, H.: An ID-based proxy signature schemes without bilinear pairings. Ann. Telecommun.-annales des télécommunications 66(11–12), 657–662 (2011)CrossRefGoogle Scholar
  9. 9.
    Dent, A.W.: A note on game-hopping proofs. IACR Cryptology ePrint Archive 2006:260 (2006)Google Scholar
  10. 10.
    Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gorantla, M.C., Boyd, C., González Nieto, J.M.: Modeling key compromise impersonation attacks on group key exchange protocols. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 105–123. Springer, Heidelberg (2009). Scholar
  12. 12.
    Hess, F.: Efficient identity based signature schemes based on pairings. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidelberg (2003). Scholar
  13. 13.
    Horng, S.-J., Tzeng, S.-F., Pan, Y., Fan, P., Wang, X., Li, T., Khan, M.K.: b-SPECS+: batch verification for secure pseudonymous authentication in vanet. IEEE Trans. Inf. Forensics Secur. 8(11), 1860–1875 (2013)CrossRefGoogle Scholar
  14. 14.
    Ingemarsson, I., Tang, D., Wong, C.: A conference key distribution system. IEEE Trans. Inf. Theory 28(5), 714–720 (1982)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Joux, A.: A one round protocol for tripartite Diffie–Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–393. Springer, Heidelberg (2000). Scholar
  16. 16.
    Katz, J., Shin, J.S.: Modeling insider attacks on group key-exchange protocols. In: Proceedings of the 12th ACM Conference on Computer and Communications Security, pp. 180–189. ACM (2005)Google Scholar
  17. 17.
    Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg (2003). Scholar
  18. 18.
    Kyung-Ah, S.: Further analysis of ID-based authenticated group key agreement protocol from bilinear maps. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 90(1), 295–298 (2007)Google Scholar
  19. 19.
    Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990). Scholar
  20. 20.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). Scholar
  21. 21.
    Steiner, M., Tsudik, G., Waidner, M.: Key agreement in dynamic peer groups. IEEE Trans. Parallel Distrib. Syst. 11(8), 769–780 (2000)CrossRefGoogle Scholar
  22. 22.
    Teng, J., Wu, C., Tang, C., Tian, Y.: A strongly secure identity-based authenticated group key exchange protocol. Sci. China Inf. Sci. 58(9), 1–12 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Wei, F., Wei, Y., Ma, C.: Attack on an ID-based authenticated group key exchange protocol with identifying malicious participants. IJ Netw. Secur. 18(2), 393–396 (2016)Google Scholar
  24. 24.
    Wu, T.-Y., Tsai, T.-T., Tseng, Y.-M.: A provably secure revocable ID-based authenticated group key exchange protocol with identifying malicious participants. Sci. World J. 2014 (2014)Google Scholar
  25. 25.
    Wu, T.-Y., Tseng, Y.-M.: Towards ID-based authenticated group key exchange protocol with identifying malicious participants. Informatica 23(2), 315–334 (2012)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Wu, T.-Y., Tseng, Y.-M., Tsai, T.-T.: A revocable ID-based authenticated group key exchange protocol with resistant to malicious participants. Comput. Netw. 56(12), 2994–3006 (2012)CrossRefGoogle Scholar
  27. 27.
    Wu, T.-Y., Tseng, Y.-M., Yu, C.-W.: A secure ID-based authenticated group key exchange protocol resistant to insider attacks. J. Inf. Sci. Eng. 27(3), 915–932 (2011)MathSciNetGoogle Scholar
  28. 28.
    Zhang, F., Chen, X.: Attack on an ID-based authenticated group key agreement scheme from PKC 2004. Inf. Process. Lett. 91(4), 191–193 (2004)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zhao, J., Gu, D., Gorantla, M.C.: Stronger security model of group key agreement. In: Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security, pp. 435–440. ACM (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gaurav Sharma
    • 1
  • Rajeev Anand Sahu
    • 1
  • Veronika Kuchta
    • 1
  • Olivier Markowitch
    • 1
  • Suman Bala
    • 2
  1. 1.Université Libre de BruxellesBrusselsBelgium
  2. 2.Amity UniversityNoidaIndia

Personalised recommendations