Advertisement

Multi-attribute Counterfeiting Tag Identification Protocol in Large-Scale RFID System

  • Dali Zhu
  • Wenjing Rong
  • Di Wu
  • Na Pang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10631)

Abstract

Counterfeiting products identification is the main application of RFID technology. Among all the RFID security problems, counterfeiting tag identification is an urgent issue with rapid growth of counterfeiters. In this paper, a multi-attribute counterfeiting tag identification protocol based on multi-dimension dynamic bloom filter in large-scale RFID system is proposed. Dynamic bloom filters for tag’s attributes: identity information ID and location information angle value, are first brought as criterion of counterfeiting tag identification. Different from previous probabilistic approaches, our protocol not only identifies unknown tags, but also first solves problem that counterfeiters hold the same ID with genuine ones. Furthermore, our protocol can detect and verify counterfeiting tags’ identity. Performance analysis shows that especially with huge amount of tags, our protocol can achieve higher identification efficiency with reasonable time cost.

Keywords

Multi-attribute Location Identification Bloom filter Security RFID 

Notes

Acknowledgement

This work was supported by research of life cycle management and control system for equipment household registration, No. J770011104 and natural science foundation of China (61701494). We also thank the anonymous reviewers and shepherd for their valuable feedback.

References

  1. 1.
    Gong, W., Stojmenovic, I., Nayak, A., et al.: Fast and scalable counterfeits estimation for large-scale RFID systems. IEEE Trans. Netw. (TON) 24(2), 1052–1064 (2016)CrossRefGoogle Scholar
  2. 2.
    The spread of counterfeiting: Knock-offs catch on. The Economist, March 2010Google Scholar
  3. 3.
    Gong, W., Liu, J., Yang, Z.: Fast and reliable unknown tag detection in large-scale RFID systems. In: Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 141–150. ACM (2016)Google Scholar
  4. 4.
    Liu, X., Qi, H., Li, K., et al.: Sampling bloom filter-based detection of unknown RFID tags. IEEE Trans. Commun. 63(4), 1432–1442 (2015)CrossRefGoogle Scholar
  5. 5.
    Weis, S.A., Sarma, S.E., Rivest, R.L., Engels, D.W.: Security and privacy aspects of low-cost radio frequency identification systems. In: Hutter, D., Müller, G., Stephan, W., Ullmann, M. (eds.) Security in Pervasive Computing. LNCS, vol. 2802, pp. 201–212. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-39881-3_18CrossRefGoogle Scholar
  6. 6.
    Lu, L., Han, J., Xiao, R., Liu, Y.: ACTION: breaking the privacy barrier for RFID systems. In: INFOCOM 2009, pp. 1953–1961. IEEE (2009)Google Scholar
  7. 7.
    Lu, L., Liu, Y., Li, X.Y.: Refresh: weak privacy model for RFID systems. In: Proceedings of INFOCOM 2010, pp. 1–9. IEEE (2010)Google Scholar
  8. 8.
    Chen, M., Chen, S.: ETAP: enable lightweight anonymous RFID authentication with O(1) overhead. In: 2015 IEEE 23rd International Conference on Network Protocols (ICNP), pp. 267–278. IEEE (2015)Google Scholar
  9. 9.
    Shahzad, M., Liu, A.X.: Fast and accurate estimation of RFID tags. IEEE/ACM Trans. Networking 23(1), 241–254 (2015)CrossRefGoogle Scholar
  10. 10.
    Liu, J., Xiao, B., Chen, S., Zhu, F.: Fast RFID grouping protocols. In: 2015 IEEE Conference on Computer Communications (INFOCOM), pp. 1948–1956. IEEE (2015)Google Scholar
  11. 11.
    Zheng, Y., Li, M.: ZOE: fast cardinality estimation for large-scale RFID systems. In: 2013 Proceedings IEEE, INFOCOM, pp. 908–916. IEEE (2013)Google Scholar
  12. 12.
    Gong, W., Liu, K., Miao, X., Liu, H.: Arbitrarily accurate approximation scheme for large-scale RFID cardinality estimation. In: 2014 Proceedings IEEE, INFOCOM, pp. 477–485. IEEE (2014)Google Scholar
  13. 13.
    Yu, J., Chen, L., Zhang, R., et al.: On missing tag detection in multiple-group multiple-region RFID systems. IEEE Trans. Mob. Comput. 16(5), 1371–1381 (2017)CrossRefGoogle Scholar
  14. 14.
    Liu, X., Li, K., Min, G., Shen, Y., Liu, A.X., Qu, W.: Completely pinpointing the missing RFID tags in a time-efficient way. IEEE Trans. Comput. 64(1), 87–96 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Liu, X., Li, K., Min, G., Shen, Y., Liu, A.X., Qu, W.: A multiple hashing approach to complete identification of missing RFID tags. IEEE Trans. Commun. 62(3), 1046–1057 (2014)CrossRefGoogle Scholar
  16. 16.
    Shahzad, M., Liu, A.X.: Expecting the unexpected: fast and reliable detection of missing RFID tags in the wild. In: 2015 IEEE Conference on Computer Communications (INFOCOM), pp. 1939–1947. IEEE (2015)Google Scholar
  17. 17.
    Yang, L., Han, J., Qi, Y., Liu, Y.: Identification-free batch authentication for RFID tags. In: 2010 18th IEEE International Conference on Network Protocols (ICNP), pp. 154–163. IEEE (2010)Google Scholar
  18. 18.
    Bianchi, G.: Revisiting an RFID identification-free batch authentication approach. IEEE Commun. Lett. 15(6), 632–634 (2011)CrossRefGoogle Scholar
  19. 19.
    Liu, X., Xiao, B., Zhang, S., Bu, K.: Unknown tag identification in large RFID systems: An efficient and complete solution. IEEE Trans. Parallel Distrib. Syst. 26(6), 1775–1788 (2015)CrossRefGoogle Scholar
  20. 20.
    Guo, D., Wu, J., Chen, H., et al.: Theory and network applications of dynamic bloom filters. In: Proceedings of 25th IEEE International Conference on Computer Communications, pp. 1–12. IEEE (2006)Google Scholar
  21. 21.
    Bloom, B.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)CrossRefGoogle Scholar
  22. 22.
    Philips Semiconductors. Your Supplier Guide to ICODE Smart Label Solutions (2008)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  2. 2.School of Cyber SecurityUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations