# An Efficiency Optimization Scheme for the On-the-Fly Statistical Randomness Test

## Abstract

In many cryptographic systems, random number can significantly influence its security. Although in practice random number generators (RNGs) are allowed to adopt only after strict analysis and security evaluation, the environmental factors also may lead the randomness of generated sequences to degrade. Therefore, on-the-fly statistical randomness test should be used to evaluate a candidate random sequence. Unfortunately, existing randomness test methods, such as the NIST test suite, are not well suitable to directly serve as on-the-fly test, because timely execution is usually not considered in their designs. In this paper, we propose a scheme to optimize the efficiency of randomness test suites, that is, providing the optimized order of the tests in a test suite, so that an unqualified sequence can be rejected as early as possible. This scheme finds out the optimized order by balancing the coverage, independence and time consumption of each test, and minimizing the average elimination time. We apply this optimization scheme on the revised NIST test suite as an instance. Experimental results on the sequences of 128 and 256 bits, demonstrate that the optimized efficiency approximates to the theoretical optimum and the scheme can be quickly implemented.

## Keywords

On-the-fly statistical randomness test Efficiency optimization Execution order Average elimination time used Multi-attribute weight allocation## Notes

### Acknowledgement

This work was partially supported by National Key R&D Plan No. 2016YFB0800504 and No. 2016QY02D0400, and National Natural Science Foundation of China No. U163620068.

## References

- 1.Vasyltsov, I., Hambardzumyan, E., Kim, Y.-S., Karpinskyy, B.: Fast digital TRNG based on metastable ring oscillator. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 164–180. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3_11CrossRefGoogle Scholar
- 2.Markettos, A.T., Moore, S.W.: The frequency injection attack on ring-oscillator-based true random number generators. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 317–331. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04138-9_23CrossRefGoogle Scholar
- 3.Fischer, V., Aubert, A., Bernard, F., et al.: True Random Number Generators in Configurable Logic Devices. Project ANR-ICTeR (2009)Google Scholar
- 4.Schindler, W.: Efficient online tests for true random number generators. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 103–117. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1_10CrossRefGoogle Scholar
- 5.Rukhin, A., Soto, J., Nechvatal, J., et al.: A statistical suite for random and pseudorandom number generators for cryptographic applications. NIST Special Publication 800-22, Washington, D.C., May 2001Google Scholar
- 6.Sönmez Turan, M., DoĞanaksoy, A., Boztaş, S.: On independence and sensitivity of statistical randomness tests. In: Golomb, S.W., Parker, M.G., Pott, A., Winterhof, A. (eds.) SETA 2008. LNCS, vol. 5203, pp. 18–29. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85912-3_2CrossRefzbMATHGoogle Scholar
- 7.NIST FIPS PUB: 140-2: Security Requirements for Cryptographic Modules. Washington, D.C., USA (2001)Google Scholar
- 8.Elaine, B., John, K.: Recommendation for random number generation using deterministic random bit generators. NIST Special Publication 800-90A, Washington, D.C., January 2012Google Scholar
- 9.Killmann, W., Schindler, W.: AIS 31: Functionality Classes and Evaluation Methodology for True (Physical) Random Number Generators. Version 3.1. T-Systems GEI GmbH and Bundesamt fr Sicherheit in der Informationstechnik (BSI), Bonn, Germany (2001)Google Scholar
- 10.Marsaglia, G.: The Marsaglia Random Number CDROM Including the Diehard Battery of Tests of Randomness (1995)Google Scholar
- 11.L’Ecuyer, P., Simard, R.J.: TestU01: AC library for empirical testing of random number generators. ACM Trans. Math. Softw.
**33**(4) (2007)CrossRefGoogle Scholar - 12.L’Ecuyer, P.: Testing random number generators. In: Winter Simulation Conference, pp. 305–313. ACM Press (1992)Google Scholar
- 13.Hellekalek, P., Wegenkittl, S.: Empirical evidence concerning AES. ACM Trans. Model. Comput. Simul.
**13**(4), 322–333 (2003)CrossRefGoogle Scholar - 14.Fan, L., Chen, H., Gao, S.: A general method to evaluate the correlation of randomness tests. In: Kim, Y., Lee, H., Perrig, A. (eds.) WISA 2013. LNCS, vol. 8267, pp. 52–62. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05149-9_4CrossRefGoogle Scholar
- 15.Maurer, U.M.: A universal statistical test for random bit generators. J. Cryptol.
**5**(2), 89–105 (1992)MathSciNetCrossRefGoogle Scholar - 16.Hamano, K., Kaneko, T.: Correction of overlapping template matching test included in NIST randomness test suite. IEICE Trans.
**90–A**(9), 1788–1792 (2007)CrossRefGoogle Scholar - 17.Kim, S.-J., Umeno, K., Hasegawa, A.: Corrections of the NIST statistical test suite for randomness. IACR Cryptology ePrint Archive 2014:18–31 (2004)Google Scholar
- 18.Hamano, K.: The distribution of the spectrum for the discrete fourier transform test included in SP800-22. IEICE Trans.
**88–A**(1), 67–73 (2005)CrossRefGoogle Scholar - 19.Pareschi, F., Rovatti, R., Setti, G.: On statistical tests for randomness included in the NIST SP800-22 test suite and based on the binomial distribution. IEEE Trans. Inf. Forensics Secur.
**7**(2), 491–505 (2012)CrossRefGoogle Scholar - 20.Sulak, F., Doğanaksoy, A., Ege, B., Koçak, O.: Evaluation of randomness test results for short sequences. In: Carlet, C., Pott, A. (eds.) SETA 2010. LNCS, vol. 6338, pp. 309–319. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15874-2_27CrossRefzbMATHGoogle Scholar
- 21.Suciu, A., Nagy, I., Marton, K., Pinca, I.: Parallel implementation of the NIST statistical test suite. In: Proceedings of the 2010 IEEE 6th International Conference on Intelligent Computer Communication and Processing (ICCP), pp. 363–368. Institute of Electrical and Electronic Engineers (2010)Google Scholar
- 22.Huang, J., Lai, X.: Measuring random tests by conditional entropy and optimal execution order. In: Chen, L., Yung, M. (eds.) INTRUST 2010. LNCS, vol. 6802, pp. 148–159. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25283-9_10CrossRefGoogle Scholar
- 23.Chen, T., Ma, Y., Lin, J., Wang, Z., Jing, J.: An efficiency optimization scheme for the on-the-fly statistical randomness test. In: Proceedings of the 2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing (CSCloud), CSCLOUD 2015, pp. 515–517. IEEE Computer Society, Washington, D.C. (2015)Google Scholar
- 24.Soto, J.: Statistical testing of random number generators. In: Proceedings of the 22nd National Information Systems Security Conference (NISSC), vol. 10, pp. 12–23. NIST, Gaithersburg (1999)Google Scholar
- 25.Soto, J.: Randomness Testing of the AES Candidate Algorithms. NIST (1999). csrc.nist.gov
- 26.NIST: The NIST Statistical Test Suite (2010). http://csrc.nist.gov/groups/ST/toolkit/rng/documents/sts-2.1.2.zip
- 27.Chen, C.B., Wang, L.Y.: Rough set-based clustering with refinement using Shannon’s entropy theory. Comput. Math. Appl.
**52**(10–11), 1563–1576 (2006)MathSciNetCrossRefGoogle Scholar