An Efficiency Optimization Scheme for the On-the-Fly Statistical Randomness Test

  • Jiahui Shen
  • Tianyu Chen
  • Lei Wang
  • Yuan Ma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10631)


In many cryptographic systems, random number can significantly influence its security. Although in practice random number generators (RNGs) are allowed to adopt only after strict analysis and security evaluation, the environmental factors also may lead the randomness of generated sequences to degrade. Therefore, on-the-fly statistical randomness test should be used to evaluate a candidate random sequence. Unfortunately, existing randomness test methods, such as the NIST test suite, are not well suitable to directly serve as on-the-fly test, because timely execution is usually not considered in their designs. In this paper, we propose a scheme to optimize the efficiency of randomness test suites, that is, providing the optimized order of the tests in a test suite, so that an unqualified sequence can be rejected as early as possible. This scheme finds out the optimized order by balancing the coverage, independence and time consumption of each test, and minimizing the average elimination time. We apply this optimization scheme on the revised NIST test suite as an instance. Experimental results on the sequences of 128 and 256 bits, demonstrate that the optimized efficiency approximates to the theoretical optimum and the scheme can be quickly implemented.


On-the-fly statistical randomness test Efficiency optimization Execution order Average elimination time used Multi-attribute weight allocation 



This work was partially supported by National Key R&D Plan No. 2016YFB0800504 and No. 2016QY02D0400, and National Natural Science Foundation of China No. U163620068.


  1. 1.
    Vasyltsov, I., Hambardzumyan, E., Kim, Y.-S., Karpinskyy, B.: Fast digital TRNG based on metastable ring oscillator. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 164–180. Springer, Heidelberg (2008). Scholar
  2. 2.
    Markettos, A.T., Moore, S.W.: The frequency injection attack on ring-oscillator-based true random number generators. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 317–331. Springer, Heidelberg (2009). Scholar
  3. 3.
    Fischer, V., Aubert, A., Bernard, F., et al.: True Random Number Generators in Configurable Logic Devices. Project ANR-ICTeR (2009)Google Scholar
  4. 4.
    Schindler, W.: Efficient online tests for true random number generators. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 103–117. Springer, Heidelberg (2001). Scholar
  5. 5.
    Rukhin, A., Soto, J., Nechvatal, J., et al.: A statistical suite for random and pseudorandom number generators for cryptographic applications. NIST Special Publication 800-22, Washington, D.C., May 2001Google Scholar
  6. 6.
    Sönmez Turan, M., DoĞanaksoy, A., Boztaş, S.: On independence and sensitivity of statistical randomness tests. In: Golomb, S.W., Parker, M.G., Pott, A., Winterhof, A. (eds.) SETA 2008. LNCS, vol. 5203, pp. 18–29. Springer, Heidelberg (2008). Scholar
  7. 7.
    NIST FIPS PUB: 140-2: Security Requirements for Cryptographic Modules. Washington, D.C., USA (2001)Google Scholar
  8. 8.
    Elaine, B., John, K.: Recommendation for random number generation using deterministic random bit generators. NIST Special Publication 800-90A, Washington, D.C., January 2012Google Scholar
  9. 9.
    Killmann, W., Schindler, W.: AIS 31: Functionality Classes and Evaluation Methodology for True (Physical) Random Number Generators. Version 3.1. T-Systems GEI GmbH and Bundesamt fr Sicherheit in der Informationstechnik (BSI), Bonn, Germany (2001)Google Scholar
  10. 10.
    Marsaglia, G.: The Marsaglia Random Number CDROM Including the Diehard Battery of Tests of Randomness (1995)Google Scholar
  11. 11.
    L’Ecuyer, P., Simard, R.J.: TestU01: AC library for empirical testing of random number generators. ACM Trans. Math. Softw. 33(4) (2007)CrossRefGoogle Scholar
  12. 12.
    L’Ecuyer, P.: Testing random number generators. In: Winter Simulation Conference, pp. 305–313. ACM Press (1992)Google Scholar
  13. 13.
    Hellekalek, P., Wegenkittl, S.: Empirical evidence concerning AES. ACM Trans. Model. Comput. Simul. 13(4), 322–333 (2003)CrossRefGoogle Scholar
  14. 14.
    Fan, L., Chen, H., Gao, S.: A general method to evaluate the correlation of randomness tests. In: Kim, Y., Lee, H., Perrig, A. (eds.) WISA 2013. LNCS, vol. 8267, pp. 52–62. Springer, Cham (2014). Scholar
  15. 15.
    Maurer, U.M.: A universal statistical test for random bit generators. J. Cryptol. 5(2), 89–105 (1992)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hamano, K., Kaneko, T.: Correction of overlapping template matching test included in NIST randomness test suite. IEICE Trans. 90–A(9), 1788–1792 (2007)CrossRefGoogle Scholar
  17. 17.
    Kim, S.-J., Umeno, K., Hasegawa, A.: Corrections of the NIST statistical test suite for randomness. IACR Cryptology ePrint Archive 2014:18–31 (2004)Google Scholar
  18. 18.
    Hamano, K.: The distribution of the spectrum for the discrete fourier transform test included in SP800-22. IEICE Trans. 88–A(1), 67–73 (2005)CrossRefGoogle Scholar
  19. 19.
    Pareschi, F., Rovatti, R., Setti, G.: On statistical tests for randomness included in the NIST SP800-22 test suite and based on the binomial distribution. IEEE Trans. Inf. Forensics Secur. 7(2), 491–505 (2012)CrossRefGoogle Scholar
  20. 20.
    Sulak, F., Doğanaksoy, A., Ege, B., Koçak, O.: Evaluation of randomness test results for short sequences. In: Carlet, C., Pott, A. (eds.) SETA 2010. LNCS, vol. 6338, pp. 309–319. Springer, Heidelberg (2010). Scholar
  21. 21.
    Suciu, A., Nagy, I., Marton, K., Pinca, I.: Parallel implementation of the NIST statistical test suite. In: Proceedings of the 2010 IEEE 6th International Conference on Intelligent Computer Communication and Processing (ICCP), pp. 363–368. Institute of Electrical and Electronic Engineers (2010)Google Scholar
  22. 22.
    Huang, J., Lai, X.: Measuring random tests by conditional entropy and optimal execution order. In: Chen, L., Yung, M. (eds.) INTRUST 2010. LNCS, vol. 6802, pp. 148–159. Springer, Heidelberg (2011). Scholar
  23. 23.
    Chen, T., Ma, Y., Lin, J., Wang, Z., Jing, J.: An efficiency optimization scheme for the on-the-fly statistical randomness test. In: Proceedings of the 2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing (CSCloud), CSCLOUD 2015, pp. 515–517. IEEE Computer Society, Washington, D.C. (2015)Google Scholar
  24. 24.
    Soto, J.: Statistical testing of random number generators. In: Proceedings of the 22nd National Information Systems Security Conference (NISSC), vol. 10, pp. 12–23. NIST, Gaithersburg (1999)Google Scholar
  25. 25.
    Soto, J.: Randomness Testing of the AES Candidate Algorithms. NIST (1999).
  26. 26.
    NIST: The NIST Statistical Test Suite (2010).
  27. 27.
    Chen, C.B., Wang, L.Y.: Rough set-based clustering with refinement using Shannon’s entropy theory. Comput. Math. Appl. 52(10–11), 1563–1576 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jiahui Shen
    • 1
    • 2
    • 3
  • Tianyu Chen
    • 1
    • 2
  • Lei Wang
    • 1
    • 2
  • Yuan Ma
    • 1
    • 2
  1. 1.Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  2. 2.Data Assurance and Communication Security Research CenterChinese Academy of SciencesBeijingChina
  3. 3.School of Cyber SecurityUniversity of Chinese Academy of SciencesHuairouChina

Personalised recommendations