Advertisement

Efficient Inner Product Encryption with Simulation-Based Security

  • Qingsong Zhao
  • Qingkai Zeng
  • Ximeng Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10631)

Abstract

An inner product encryption (IPE) scheme is a special type of functional encryption where the decryption algorithm, given a ciphertext related to a vector \({\varvec{x}}\) and a secret key to a vector \({\varvec{y}}\), computes the inner product \(\langle {\varvec{x}}, {\varvec{y}}\rangle \). A function-hiding IPE scheme requires that the secret key reveals no unnecessary information on the vector \({\varvec{y}}\) besides the privacy of the vector \({\varvec{x}}\). In this paper, we construct a function-hiding IPE scheme using the asymmetric bilinear pairing group setting of prime order. Compared with the existing similar schemes, our construction both reduces necessary storage complexity and computational complexity by a factor 2 or more and achieves simulation-based security, which is much stronger than indistinguishability-based security, under the External Decisional Linear assumption in the standard model.

Keywords

Functional encryption Inner product Function privacy Simulation-based security 

Notes

Acknowledgments

This work has been partly supported by National NSF of China under Grant No. 61772266, 61572248, 61431008.

References

  1. 1.
    Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption: new perspectives and lower bounds. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 500–518. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_28CrossRefGoogle Scholar
  2. 2.
    Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53015-3_12CrossRefGoogle Scholar
  3. 3.
    Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 470–491. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48797-6_20CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryption: hiding the function in functional encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_26CrossRefzbMATHGoogle Scholar
  5. 5.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_16CrossRefGoogle Scholar
  6. 6.
    Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 306–324. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_12CrossRefGoogle Scholar
  7. 7.
    Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49384-7_7CrossRefGoogle Scholar
  8. 8.
    De Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the achievability of simulation-based security for functional encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 519–535. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_29CrossRefGoogle Scholar
  9. 9.
    Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: STOC, pp. 555–564 (2013)Google Scholar
  10. 10.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_11CrossRefGoogle Scholar
  11. 11.
    Kim, S., Lewi, K., Mandal, A., Montgomery, H., Roy, A., Wu, D.J.: Function-hiding inner product encryption is practical. Cryptology ePrint Archive, Report 2016/440 (2016)Google Scholar
  12. 12.
    Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_11CrossRefGoogle Scholar
  13. 13.
    Okamoto, T., Takashima, K.: Homomorphic encryption and signatures from vector decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 57–74. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85538-5_4CrossRefGoogle Scholar
  14. 14.
    Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10366-7_13CrossRefGoogle Scholar
  15. 15.
    O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556 (2010)Google Scholar
  16. 16.
    Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00457-5_27CrossRefGoogle Scholar
  17. 17.
    Tomida, J., Abe, M., Okamoto, T.: Efficient functional encryption for inner-product values with full-hiding security. In: Bishop, M., Nascimento, A.C.A. (eds.) ISC 2016. LNCS, vol. 9866, pp. 408–425. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45871-7_24CrossRefGoogle Scholar
  18. 18.
    Zhao, Q., Zeng, Q., Liu, X., Xu, H.: Simulation-based security of function-hidinginner product encryption. Sci. China Inf. Sci. 61, 048102 (2017).  https://doi.org/10.1007/s11432-017-9224-9CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory for Novel Software Technology, Department of Computer Science and TechnologyNanjing UniversityNanjingChina
  2. 2.College of Mathematics and Computer ScienceFuzhou UniversityFuzhouChina
  3. 3.School of Information SystemsSingapore Management UniversitySingaporeSingapore
  4. 4.College of Information Science and TechnologyNanjing Agricultural UniversityNanjingChina

Personalised recommendations