Skip to main content

Embryogenic Tissue Initiation in Loblolly Pine (Pinus Taeda L.)

  • Chapter
  • First Online:

Part of the book series: Forestry Sciences ((FOSC,volume 84))

Abstract

Somatic embryogenesis (SE) technology has the potential to be the lowest-cost method to rapidly produce large numbers of high-value seedlings with desired characteristics for plantation forestry. SE is expected to play an important role in the future to increase forest productivity, sustainability and uniformity. SE technology has the advantages of: (1) shortening time to produce desired Planting stock, (2) allowing control of genetic variation,  (3) permitting commercial hybrids, and  (4) facilitating genetic engineering efforts for desirable traits. Conifer SE proceeds through four steps: initiation, multiplication, maturation and germination and cryopreservation when storage of cultures is desired. This report will focus on the initiation step. When research began, initiation rates for loblolly pine were often below 1%. Early improvements occurred through combinations of optimal embryo stages, half-strength P6 salts, ovule osmotic profile research, modeling activated carbon (AC) uptate of 2,4-D and research to understand the effect of pH and  AC on mineral availability. Many improvements in loblolly pine initiation over the past 30 years have resulted from careful study of the developing seed and embryo. Medium supplements and environmental conditions are available to improve imitiation and somatic embryo development that have resulted from analytical studies of seed tissues, the seed environment and gene experssion in the megagametophyte, zygotic embryos and somatic embryos.   

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrahamsson M, Valladares S, Merino I, Larsson E, von Arnold S (2017) Degeneration pattern in somatic embryos of Pinus sylvestris L. In Vitro Cell Dev Biol-Plant 53:86–96

    Article  CAS  Google Scholar 

  • Aitken-Christie J, Parkes BD (1996) Improved embryogenesis process for initiation and maturation. International application under the patent cooperation treaty (PCT). WO 96/37096, International publication date: 28 November 1996

    Google Scholar 

  • Auboiron E, Darron MP, Michaux-Ferriere N (1990) Influence of atmospheric gases, particularly ethylene, on somatic embryogenesis of Hevea brasiliensis. Plant Cell Tiss Org Cult 21:31–37

    Article  CAS  Google Scholar 

  • Becwar MR, Blush TD, Brown DW, Chesick EE (1991) Multiple paternal genotypes in embryogenic tissue derived from individual immature loblolly pine seeds. Plant Cell Tiss. Org. Cult. 26:37–44

    Article  Google Scholar 

  • Becwar MR, Krueger SA (2004) Recovering cryopreserved embryogenic cultures. US Patent 6,682,931, issued 27 Jan 2004

    Google Scholar 

  • Becwar MR, Nagmani R, Wann SR (1990) Initiation of embryogenic cultures and somatic embryo development in loblolly pine (Pinus taeda). Can J For Res 20:810–817

    Article  Google Scholar 

  • Becwar MR, Pullman GS (1995) Somatic embryogenesis in loblolly pine (Pinus taeda L.). In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants—Gymnosperms, vol 3. Dordrecht, The Netherlands, pp 287–301

    Chapter  Google Scholar 

  • Belmonte MF, Stasolla C (2009) Altered HBK3 expression affects glutathione and ascorbate metabolism during the early phases of Norway spruce (Picea abies) somatic embryogenesis. Plant Physiol Biochem 47:904–911

    Article  CAS  PubMed  Google Scholar 

  • Beyer EM (1976) A potent inhibitor of ethylene action in plants. Plant Physiol 58:268–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biddington NL (1992) The influence of ethylene in plant tissue culture. Plant Growth Regul 11:173–187

    Article  CAS  Google Scholar 

  • Bossio E, Paleo AD, del Vas M, Baroli I, Acevedo A, Rios RD (2013) Silencing of the glutathione biosynthetic pathway inhibits somatic embryogenesis in wheat. Plant Cell Tiss Org Cult 112:239–248

    Article  CAS  Google Scholar 

  • Bourgin JP, Nitsch JP (1967) Obtention de Nicotiana haploids a partir d’etamines cultivees in vitro. Ann Physiol Veg 9:377–382

    Google Scholar 

  • Bradford KJ (1994) Water stress and the water relations of seed development: a critical review. Crop Sci 34:1–11

    Article  Google Scholar 

  • Brosa D (1999) Biological effects of brassinosteroids. Crit Rev Biochem Mol Biol 34:339–358

    Article  CAS  PubMed  Google Scholar 

  • Cairney J, Pullman GS (2007) The cellular and molecular biology of conifer embryogenesis. New Phytol 176:511–536

    Article  CAS  PubMed  Google Scholar 

  • Cairney J, Xu N, Pullman GS, Ciavatta VT, Johns B (1999) Natural and somatic embryo development in loblolly pine: gene expression studies using differential display and cDNA arrays. Appl Biochem Biotechnol 77–79:5–17

    Article  Google Scholar 

  • Cairney J, Xu N, MacKay J, Pullman G (2000) Transcript profiling: a tool to assess the development of conifer embryos. In Vitro Cell Dev Biol-Plant 36:155–162

    Article  CAS  Google Scholar 

  • Carman JG, Reese G, Fuller RJ, Ghermay J, Timmis R (2005) Nutrient and hormone levels in Douglas-fir corrosion cavities, megagametophytes, and embryos during embryony. Can J For Res 35:2447–2456

    Article  CAS  Google Scholar 

  • Chalupa V (1985) Somatic embryogenesis and plantlet regeneration from cultured immature and mature embryos of Picea abies (L.) Karst. Commun Inst For Chech 14:57–63

    Google Scholar 

  • Clouse SD (2001) Brassinosteroids. In: Somerville CR, Meyerowitz EM (eds) The arabidopsis book. American Society of Plant Biologists, Rockville, Md. http://www.aspb.org/publications/arabidopsis/

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  CAS  PubMed  Google Scholar 

  • Coke JE (1996) Basal nutrient medium for In Vitro cultures of loblolly pines. U.S. Patent 5,534,434, issued 9 July 1996

    Google Scholar 

  • Denchev P, Attree SM, Kong L, Tsai C, Radley RA, Lobatcheva II (2011) Method for reproducing conifers by somatic embryogenesis using lactose as a carbon source. U.S. Patent 7,906,334, issued 15 Mar 2011

    Google Scholar 

  • Dodds JH, Roberts LW (1995) Experiments in plant tissue culture, 3rd edn. Cambridge University Press, London

    Google Scholar 

  • Dogra PD (1967) Seed sterility and disturbances in embryogeny in conifers with particular reference to seed testing and tree breeding in Pinaceae. Studia Forestalia Suecica 45:5–97

    Google Scholar 

  • Dumont-BeBoux N, Mazari A, Livingston NJ, von Aderkas P, Becwar MR, Percy RE, Pond SE (1996) Water relations parameters and tissue development in somatic and zygotic embryos of three pinaceous conifers. Am J Bot 83:992–996

    Article  Google Scholar 

  • Durzan D (2012) Interpolated apomictic somatic embryogenesis, androsporogenesis, asexual heterospory, mitosporogenesis and genomic silencing in a gymnosperm artificial sporangium. In: Proceedings of the IUFRO working party 2.09.02 conference “Integrating vegetative propagation, biotechnologies and genetic improvement for tree production and sustainable forest management” 25–28 June 2012, Brno, Czech Republic, pp 3–36

    Google Scholar 

  • Ebert A, Taylor HF (1990) Assessment of the changes of 2,4-dichlorophenoxyacetic acid concentrations in plant tissue culture media in the presence of activated charcoal. Plant Cell Tis Org Cult 20:165–172

    CAS  Google Scholar 

  • Ebert A, Taylor F, Blake J (1993) Changes of 6-benzylaminopurine and 2,4-dichlorophenoxyacetic acid concentrations in plant tissue culture media in the presence of activated charcoal. Plant Cell Tiss Org Cult 33:157–162

    Article  CAS  Google Scholar 

  • Fehr A (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss Org Cult 74:201–228

    Article  Google Scholar 

  • Fox TR, Jokela EJ, Allen HL (2007) The development of pine plantation silviculture in the southern United States. J For 105:337–347

    Google Scholar 

  • Gifford EM, Foster AS (1989) Morphology and evolution of vascular plants, 3rd edn. W.H. Freeman, New York, NY, USA

    Google Scholar 

  • Gupta PK (2016) Methods of initiating plant somatic embryos. U.S. Patent 9374954, issued 28 June 2016

    Google Scholar 

  • Gupta PK, Durzan DJ (1987) Biotechnology of somatic polyembryogenesis and plantlet regeneration in loblolly pine. Bio/Technol 5:147–151

    Google Scholar 

  • Gupta PK, Holmstrom D (2005) Double staining technology for distinguishing embryogenic cultures. In: Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants. Springer, The Netherlands, pp 573–575

    Google Scholar 

  • Hackman I, von Arnold S (1985) Plantlet regeneration through somatic embryogenesis in Picea abies (Norway spruce). J Plant Physiol 121:149–158

    Article  Google Scholar 

  • Handley L III (1997) Method for regeneration of coniferous plants by somatic embryogenesis in culture media containing abscisic acid. U.S. Patent 5,677,185, issued 14 Oct 1997

    Google Scholar 

  • Handley L III (1999) Method for regeneration of coniferous plants by somatic embryogenesis in culture media containing abscisic acid. U.S. Patent 5,856,191, issued 5 Jan 1999

    Google Scholar 

  • Huggett R, Wear DN, Li R, Coulston J, Liu S (2013) Forecasts of forest conditions. Ch. 5. In: Wear DN, Greis JG (eds) The southern forest futures project: technical report, USDA For. Serv. Gen. Tech. Rep. SRS-178, Southern Research Station, Asheville, NC

    Google Scholar 

  • Iraqui D, Tremblay FM (2001) Analysis of carbohydrate metabolism enzymes and cellular contents of sugars and proteins during spruce somatic embryogenesis suggests a regulatory role of exogenous sucrose in embryo development. J Exp Bot 52:2301–2311

    Article  Google Scholar 

  • Kao KN, Michayluk MR (1975) Nutritional requirements for growth of Vicia hajastana cells and protoplasts at a very low population density in liquid media. Planta 126:105–110

    Article  CAS  PubMed  Google Scholar 

  • Kapik RH, Dinus RJ, Dean JF (1995) Abscisic acid and zygotic embryogenesis in Pinus taeda. Tree Physiol 15(485–409):1995

    Google Scholar 

  • Klimaszewska K, Trontin JF, Becwar MR, Devillard C, Park YS, Lelu-Walter MA (2007) Recent progress in somatic embryogenesis of four Pinus spp. Tree For Sci Biotechnol 1:11–25

    Google Scholar 

  • Kong L, Attree SM, Fowke LC (1997) Changes in endogenous hormone levels in developing seeds, zygotic embryos and megagametophytes in Picea glauca. Physiol Plant 101:23–30

    Article  CAS  Google Scholar 

  • Kumar PP, Richard WJI, Thorp TA (1989) Ethylene and carbon dioxide accumulation, and growth of cell suspension cultures of Picea glauca (white spruce). J Plant Physiol 135:592–596

    Article  Google Scholar 

  • Li XY, Huang H (1996) Induction of somatic embryogenesis in loblolly pine (Pinus taeda L.). In Vitro Cell Dev Biol-Plant 32:129–135

    Article  Google Scholar 

  • Lulsdorf MM, Tautorus TE, Kikcio SI, Dunstan DI (1992) Growth parameters of embryogenic suspension cultures of interior spruce (Picea glauca-engelmannii complex) and black spruce (Picea mariana Mill.). Plant Sci 82:227–234

    Article  CAS  Google Scholar 

  • Ma X, Bucalo K, Determann RO, Cruse-Sanders JM, Pullman GS (2012) Somatic embryogenesis, plant regeneration and cryopreservation for Torreya taxifolia, a highly endangered coniferous species. In Vitro Cell Dev Biol-Plant 48:324–334

    Article  CAS  Google Scholar 

  • MacKay J, Becwar M, Park Y, Perfetti C, Cordero J, Lockart L, Pullman GS (2006) Genetic control of somatic embryogenesis initiation in loblolly pine and implications for breeding. Tree Genet Genomes 2:1–9

    Article  Google Scholar 

  • MacKay J, Becwar M, Park YS, Perfetti C, Corderro J, Pullman GS, Lockhart L (2001) Genetics of somatic embryogenesis in loblolly pine. In: Dean JF (ed) Proceedings (Publ. No. 48) of the 26th southern forest tree improvement conference, University of Georgia, Athens, GA, USA, 26–29, June 2001, pp 40–47

    Google Scholar 

  • Malabadi R, Nataraja K (2007) 24-Epibrassinolide induces somatic embryogenesis in Pinus wallichiana A. B. Jacks. J Plant Sci 2:171–178

    Article  CAS  Google Scholar 

  • Minocha SC (1987) PH of the medium and the growth and metabolism of cells in culture. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry, vol 1. Martinus Nijhoff, Boston, pp 125–141

    Chapter  Google Scholar 

  • Nagmani R, Bonga JM (1985) Embryogenesis in subcultured callus of Larix decidua. Can J Res 15:1088–1091

    Article  Google Scholar 

  • Nagmani R, Diner AM, Garton S, Zipf AE (1995) Anatomical comparison of somatic and zygotic embryogeny in conifers. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 1. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 23–48

    Google Scholar 

  • Nissen SJ, Sutter EG (1990) Stability of IAA and IBA in nutrient medium to several tissue culture procedures. HortScience 25:800–802

    CAS  Google Scholar 

  • Nix S (2013) Ten most common trees in the United States. http://forestry.about.com/b/2012/07/21/ten-most-common-trees-in-the-united-states.htm. Accessed 12 Jan 2017

  • Pan MJ, van Staden J (1998) The use of charcoal in In Vitro culture—a review. Plant Growth Regul 26:155–163

    Article  CAS  Google Scholar 

  • Pullman GS (1997) Osmotic measurements of whole ovules during loblolly pine embryo development. In: TAPPI biological sciences symposium, San Francisco, CA, TAPPI Press, Atlanta, GA, 19–23 Oct 1997, pp 41–48

    Google Scholar 

  • Pullman GS, Bucalo K (2011) Pine somatic embryogenesis using zygotic embryos as explants. In: Thorpe T, Yeung E (eds) Plant embryo culture: methods and protocols. Humana Press, New York, pp 267–291

    Chapter  Google Scholar 

  • Pullman GS, Bucalo K (2014) Pine somatic embryogenesis: analyses of seed tissue and medium to improve protocol development. New For. 45:353–377

    Article  Google Scholar 

  • Pullman GS, Buchanan M (2003) Loblolly pine (Pinus taeda L.): stage-specific elemental analyses of zygotic embryo and female gametophyte tissue. Plant Sci 164:943–954

    Article  CAS  Google Scholar 

  • Pullman GS, Buchanan M (2006) Identification and quantitative analysis of stage-specific organic acids in loblolly pine (Pinus taeda L.) zygotic embryo and female gametophyte. Plant Sci 170:634–647

    Article  CAS  Google Scholar 

  • Pullman GS, Buchanan M (2008) Identification and quantitative analysis of stage-specific carbohydrates in loblolly pine (Pinus taeda) zygotic embryo and female gametophyte tissues. Tree Physiol 28:985–996

    Article  CAS  PubMed  Google Scholar 

  • Pullman GS, Johnson S (2002) Somatic embryogenesis in loblolly pine (Pinus taeda L.): improving culture initiation rates. Ann For Sci 59:663–668

    Article  Google Scholar 

  • Pullman GS, Johnson S (2009a) Loblolly pine (Pinus taeda L.) female gametophyte and embryo pH changes during embryo and seed development. Tree Physiol 29:829–836

    Article  CAS  PubMed  Google Scholar 

  • Pullman GS, Johnson S (2009b) Osmotic measurements in whole megagametophytes and embryos of loblolly pine (Pinus taeda L.) during embryo and seed development. Tree Physiol 29:819–827

    Article  PubMed  Google Scholar 

  • Pullman GS, Skryabina A (2007) Liquid medium and liquid overlays improve embryogenic tissue initiation in conifers. Plant Cell Rep 26:873–887

    Article  CAS  PubMed  Google Scholar 

  • Pullman GS, Webb DT (1994) An embryo staging system for comparison of zygotic and somatic embryo development. In: TAPPI R&D division biological sciences symposium, Minneapolis, MN, TAPPI Press, Atlanta, GA, 3–6 Oct 1994, pp 31–34 (ISBN 0-89852-930-1)

    Google Scholar 

  • Pullman GS, Chase KM, Skryabina A, Bucalo K (2008) Conifer embryogenic tissue initiation: improvements by supplementation of medium with d-chiro-inositol and d-xylose. Tree Physiol 29:147–156

    Article  CAS  PubMed  Google Scholar 

  • Pullman GS, Chopra R, Chase KM (2006) Loblolly pine (Pinus taeda L.) somatic embryogenesis: improvements in embryogenic tissue initiation by supplementation of medium with organic acids, Vitamins B12 and E. Plant Sci 170:648–658

    Article  CAS  Google Scholar 

  • Pullman GS, Gupta PK, Timmis R, Carpenter C, Kreitinger M, Welty E (2005a) Improved Norway spruce somatic embryo development through the use of abscisic acid combined with activated carbon. Plant Cell Rep 24:271–279

    Article  CAS  PubMed  Google Scholar 

  • Pullman GS, Johnson S, Bucalo K (2009) Douglas fir embryogenic tissue initiation. Plant Cell Tiss Org Cult 96:75–84

    Article  Google Scholar 

  • Pullman GS, Johnson S, Peter G, Cairney J, Xu N (2003a) Improving loblolly pine somatic embryo maturation: comparison of somatic and zygotic embryo morphology, germination, and gene expression. Plant Cell Rep 21:747–758

    PubMed  CAS  Google Scholar 

  • Pullman GS, Montello P, Cairney J, Xu N, Feng X (2003b) Loblolly pine (Pinus taeda L.) somatic embryogenesis: maturation improvements by metal analyses of zygotic and somatic embryos. Plant Sci 164:955–969

    Article  CAS  Google Scholar 

  • Pullman GS, Namjoshi K, Zhang Y (2003c) Somatic embryogenesis in loblolly pine (Pinus taeda L.): Improving culture initiation with abscisic acid and silver nitrate. Plant Cell Rep 22:85–95

    Article  CAS  PubMed  Google Scholar 

  • Pullman GS, Zhang Y, Phan B (2003d) Brassinolide improves embryogenic tissue initiation in conifers and rice. Plant Cell Rep 22:96–104

    Article  CAS  PubMed  Google Scholar 

  • Pullman GS, Johnson S, Van Tassel S, Zhang Y (2005) Somatic embryogenesis in loblolly pine (Pinus taeda L.) and Douglas fir (Pseudotsuga menziesii): Improving culture initiation and growth with MES pH buffer, biotin, and folic acid. Plant Cell Tiss Org Cult 80:91–103

    Article  CAS  Google Scholar 

  • Pullman GS, Mein J, Johnson S, Zhang Y (2005) Gibberellin inhibitors improve embryogenic tissue initiation in conifers. Plant Cell Rep 23:596–605

    Article  CAS  PubMed  Google Scholar 

  • Pullman GS, Olson K, Fischer T, Egertsdotter U, Frampton J, Bucalo K (2016) Fraser fir somatic embryogenesis: high frequency initiation, maintenance, embryo development, germination and cryopreservation. New For 47:453–480

    Article  Google Scholar 

  • Pullman GS, Zeng X, Copeland-Kemp B, Crockett J, Lucrezi J, May SW, Bucalo K (2015) Conifer somatic embryogenesis: improvements by supplementation of medium with oxidation-reduction agents. Tree Physiol 35:209–224

    Article  CAS  PubMed  Google Scholar 

  • Rademacher W (2000) Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol 51:501–531

    Article  CAS  PubMed  Google Scholar 

  • Rai MK, Shekhawat NS, Harish, Gupta AK, Phulwaria N, Ram K, Jaiswal U (2011) The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell Tiss Org Cult 106:179–190

    Article  CAS  Google Scholar 

  • Roustan JP, Latche A, Fallot J (1989) Stimulation of Daucus carota somatic embryogenesis by inhibitors of ethylene synthesis: cobalt and nickel. Plant Cell Rep 8:182–185

    Article  CAS  PubMed  Google Scholar 

  • Roustan JP, Latche A, Fallot J (1990) Control of carrot somatic embryogenesis by AgNO3, an inhibitor of ethylene action: effect on arginine decarboxylase. Plant Sci 67:89–95

    Article  CAS  Google Scholar 

  • Rudus I, Kepczynska E, Kepczynski J (2000) Regulation of Medicago sativa L. somatic embryogenesis by gibberellins. Plant Growth Regul 36:91–95

    Article  Google Scholar 

  • Sakamoto T, Kamiya N, Ueguchi-Tanaka M, Iwahori S, Matsuoka M (2001) KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev 15:581–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz RP (1999) Loblolly—the pine for the twenty-first century. New For 17:71–88

    Article  Google Scholar 

  • Singh H (1978) Embryology of gymnosperms. In: Handbuch der Pflanzenanatomie (Encyclopedia of Plant Anatomy), vol 10. Part 2. Gebruder Borntraeger, Berlin, Germany

    Google Scholar 

  • Stasolla C (2010) Glutathione redox regulation of in vitro embryogenesis. Plant Physiol Biochem 48:319–327

    Article  CAS  PubMed  Google Scholar 

  • Stasolla C, Yeung EC (1999) Ascorbic acid improves conversion of white spruce somatic embryos. In Vitro Cell Dev Biol-Plant 35:316–319

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates Inc, Sunderland, MA, 782 p

    Google Scholar 

  • Tang W, Ouyang F, Guo ZC (1998) Studies on embryogenic callus induction and plant regeneration in loblolly pine. Sci Silv Sin 34:115–119

    Google Scholar 

  • Tang W, Guo ZC, Ouyang F (2001) Plant regeneration from embryogenic cultures initiated from mature loblolly pine zygotic embryos. In Vitro Cell Dev-Plant 37:558–563

    Article  Google Scholar 

  • Teasdale RD, Dawson PA, Woolhouse GW (1986) Mineral nutrient requirements of a loblolly pine (Pinus taeda) cell suspension culture. Plant Physiol 82:942–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas TD (2008) The role of activated charcoal in plant tissue culture. Biotechnol Adv 26:618–631

    Article  CAS  PubMed  Google Scholar 

  • Toering A, Pullman GS (2005) Modeling available 2,4-dichlorophenoxyacetic acid in a tissue culture medium containing activated carbon. Plant Cell Tiss Org Cult 82:179–188

    Article  CAS  Google Scholar 

  • Van Winkle SC, Pullman GS (2003) The combined impact of pH and activated carbon on the elemental composition of plant tissue culture media. Plant Cell Rep 22:303–311

    Article  CAS  PubMed  Google Scholar 

  • Van Winkle SC, Pullman GS (2005) Achieving desired plant growth regulator levels in liquid plant tissue culture media that include activated carbon. Plant Cell Rep 24:201–208

    Article  CAS  PubMed  Google Scholar 

  • Van Winkle SC, Johnson S, Pullman GS (2003) The impact of Gelrite and activated carbon on the elemental composition of plant tissue culture media. Plant Cell Rep 21:1175–1182

    Article  CAS  PubMed  Google Scholar 

  • Vieira LN, Santa-Catarina C, Fraga HPF, Santos ALW, Steinmacher DA, Schlogl PS, Silveira V, Steiner N, Floh EIS, Guerra MP (2012) Glutathione improves early somatic embryogenesis in Araucaria angustifolia (Bert) O. Kuntze by alteration in nitric oxide emission. Plant Sci 195:80–87

    Article  CAS  Google Scholar 

  • von Aderkas P, Label P, Lelu MA (2002) Charcoal affects early development and hormonal concentrations of somatic embryos of hybrid larch. Tree Physiol 22:431–434

    Google Scholar 

  • Xu N, Johns B, Pullman GS, Cairney J (1997) Rapid and reliable differential display from minute amounts of tissue: mass cloning and characterization of differentially expressed genes from loblolly pine embryos. Plant Mol Biol Rep 15:377–391

    Article  CAS  Google Scholar 

  • Yeung EC, Belmonte MF, Tu LTT, Stasolla C (2005) Glutathione modulation of in vitro development. Vitro Cell Dev Biol Plant 41:584–590

    Article  Google Scholar 

  • Zavattieri MA, Frederico AM, Lima M, Sabino R, Arnholdt-Schmitt B (2010) Induction of somatic embryogenesis as an example of stress-related plant reactions. Electron J Biotechnol [online] 13(1) [11/14/13] 15 Jan 2010. http://www.scielo.cl/scielo.php?pid=S0717-34582010000100012&script=sci_arttext. Accessed 30 Mar 2017

Download references

Acknowledgements

I thank the Institute of Paper Science and Technology at Georgia Tech (Renewable Bioproducts Institute) and its member companies for providing funding, materials and supplies and a home for this research over the past 24 years. Without plant materials from forest companies including Arborgen, Boise Cascade, Georgia Pacific, MeadWestvaco Corporation, Union Camp, Westvaco and Weyerhaeuser NR Company this research could not have been done. I also thank the Georgia Institute of Technology, State of Georgia TIP3 Program, and the Consortium for Plant Biotechnology Research (DOE Prime Agreement No. DEFG36-02GO12026 and USEPA grant EM-83438801) along with member companies Arborgen, Monsanto Company and Weyerhaeuser Company for financial support. In addition, I am grateful for the valuable assistance of Michael Buchanan, Kylie Bucalo, Dr. John Cairney, Kelly-Marie Chase, Xiaorong Feng, Shannon Johnson, Dr. Sheldon W. May, Jonathan Mein, Paul Montello, Kavita Namjoshi, Anna Skryabina, Xiaoyan Zeng and Yalin Zhang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald S. Pullman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pullman, G.S. (2018). Embryogenic Tissue Initiation in Loblolly Pine (Pinus Taeda L.). In: Jain, S., Gupta, P. (eds) Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants. Forestry Sciences, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-319-89483-6_2

Download citation

Publish with us

Policies and ethics